BROT 2 – a mediterranean plant trait database

July 10th, 2018 No comments

We have released a new version of the BROT database on plant functional traits for Mediterranean Basin species [1]. BROT 2.0 is an improved and expanded version of BROT 1.0 [2]; while the first version focused on fire related traits, the version 2.0 is more general and include a higher diversity plant functional traits. BROT 2 includes 25,764 individual records of 44 traits from 2,457 plant taxa distributed in 119 taxonomic families.


The structure of the BROT 2 database is very simple and include four files (or tables) linked by IDs: the Data file (the main file), the Taxa file, Sources file, and an additional Synonymous file. Tables 5, 6, 7, and 9 refer to the place in the paper [1] with the definitions of the corresponding field.Geographical scope of BROT in the Mediterranean Basin. Circles are the locations of the data (for records with geographical coordinates), with colors indicating the number of records. The blue region refers to the Mediterranean climate area following Quézel & Médail (2003).
 

References

[1] Tavsanoglu Ç. & Pausas J.G. 2018. A functional trait database for Mediterranean Basin plants. Scientific Data 5: 180135 [doi | SciDat | pdf | data | BROT web]

[2] Paula, S., M. Arianoutsou, D. Kazanis, Ç. Tavsanoglu, F. Lloret, C. Buhk, F. Ojeda, B. Luna, J. M. Moreno, A. Rodrigo, J. M. Espelta, S. Palacio, B. Fernández-Santos, P. M. Fernandes, and J. G. Pausas. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420-1420. [doi | ESA journals | Ecological Archives | pdf | BROT web]

 

Fire benefits flower beetles

June 28th, 2018 No comments

For two years we sampled invertebrates after two large wildfires in eastern Spain and demonstrate that two flower beetle species, Protaetia morio and P. oblonga (Cetoniidae; Fig. 1 & 2 below), show a pyrophilous behaviour [1]. These beetles were much more numerous after the fires than in unburnt plots around the fire perimeter; in addition, these species tended to increase in number with the distance from the fire perimeter and with fire recurrence (Fig. 3 below). These results suggest that local populations survived the fire as eggs or larvae protected in the soil, and then they were favoured postfire (i.e., population size increased, compared with unburnt zones). We propose that this could be driven by the reduction of their predator populations, as vertebrates that feed on these beetles are disfavored by fire. That is, the results suggest that these flower beetle species benefit from fire because fire disrupts antagonistic interactions with their predators (predation release hypothesis).


Fig. 1. Protaetia morio: eggs, larva, pupal, and adult (photos: S. Montagud); pitfall trap full of Protaetia beetles (bottom left).


Fig. 2: Protaetia morio (male and famale) and Protaetia oblonga (male and female)

 

Fig. 3: Abundance (number of individuals) of Protaetia morio one and two years after fire (from two fires that occurred in 2012). Green: Unburnt; Yellow: Burnt edge (< 700 m from the fire perimeter); Orange: Burnt center (> 1.3 km from the fire perimeter). P. oblonga showed a similar pattern. For details, see [1].

Reference 
[1] Pausas, J.G., Belliure, J., Mínguez, E. & Montagud, S. (2018) Fire benefits flower beetles in a mediterranean ecosystem. PLoS ONE, 13: e0198951. [doi | plos | pdf]

 

Incendios: cambios recientes y soluciones

June 19th, 2018 No comments

Recientemente, Greenpeace hizo un par de preguntas a varias personas que trabajan en diferentes ámbitos relacionados con incendios forestales (noticia | documento). Aquí copio mis respuestas.

¿En qué han cambiado los incendios?

En las últimas décadas se ha observado un cambio brusco en el régimen de incendios, aumentando la frecuencia y, especialmente, el tamaño de los incendios. Los incendios requieren de tres factores: combustible (vegetación densa y continua), igniciones, y condiciones propensas a la propagación del fuego (sequedad, viento). Estos tres factores se han visto favorecidos en los últimos años y de manera simultánea:

(1) ha aumentado la cobertura, continuidad y densidad de la vegetación en el paisaje, incrementando la biomasa y el combustible disponible para los incendios;

(2) ha cambiado el clima hacia veranos más cálidos, más secos, y más largos, por lo que se dan mejores condiciones para la propagación del fuego y durante más tiempo; y

(3) ha aumentado la población urbana en las zonas de interfaz urbano-forestal (ver foto), lo que conlleva un mayor número de igniciones, tanto accidentales como provocadas.

En definitiva, actualmente hay más incendios porque tenemos paisajes y climas más propensos a la propagación del fuego, y más igniciones.

De estos tres factores, el que más ha influido en el cambio del régimen de incendios es el aumento de vegetación (biomasa) en nuestros paisajes. Este aumento se debe principalmente al abandono de las actividades rurales (tales como la agricultura, el pastoreo, la extracción de leña, o la gestión de las plantaciones forestales), y a las políticas de exclusión total de los incendios, sin una sustitución por otros sistemas que controlen la vegetación, tales como los herbívoros silvestres, o las quemas y el pastoreo prescritos.

¿Como mitigar el impacto de los incendios?

La política de tolerancia cero a los incendios no ha funcionado en ningún país del mundo. El reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente. Para ello se precisan acciones a distintos niveles, tales como aceptar abiertamente un cierto régimen de incendios (especialmente en zonas poco pobladas y en ecosistemas con adaptaciones al fuego), crear discontinuidades en paisajes forestales homogéneos (por ejemplo, mosaicos agrícola-forestales), o reducir el combustible en zonas estratégicas o próximas a viviendas. También implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. A los efectos ambientales que supone la expansión de estas zonas de interfaz (por ejemplo, en biodiversidad, especies invasoras, contaminación lumínica y visual, etc.), hay que añadir que constituyen una gran fuente de igniciones, y que convierten en catastróficos (socialmente) incluso a regímenes de incendios ecológicamente sostenibles. Los mecanismos para limitar estas zonas pueden ser diversos, incluyendo la recalificación de terrenos (a no urbanizables), o la implementación de tasas (disuasorias) por construir en áreas con alto riesgo de incendios, entre otros. Además, y con carácter más general, incrementar las medidas que frenan el cambio climático contribuiría a reducir los cambios no deseados en el régimen de incendios.


Foto: Ejemplo de interfaz urbano-forestal (Port d’Andratx, Mallorca; foto: @xarxaforestal). Con este modelo de urbanismo, además de aumentar la probabilidad de igniciones, convertimos en catastróficos incluso a regímenes de incendios ecológicamente sostenibles.

 

Más información

Incendios forestales, una visión desde la ecología
Acabar con los incendios es antinatural e insostenible
Cinco cuestiones sobre inflamabilidad e incendios

A fire ecology lesson from the Florida scrub

June 11th, 2018 No comments

Fire is a key ecological factor in many Mediterranean shrublands [1]. But there is another shrubland, the Florida scrub, that share many characteristics with mediterranean ecosystems. Fire is frequent in the Florida scrub, and most plant strategies to deal with fire are the same to those found in mediterranean ecosystems, despite the species are different (a likely case of convergent evolution). The Florida scrub occurs on sandy soils of the Florida Peninsula (USA), under a subtropical climate.

Eric Menges, a fire ecologist at Archbold Biological Station in Florida, explains in this 16-minute video the main adaptive traits of plants to live in the Florida scrub. In his words “the lack of fire is a bigger disturbance than the fire”. All strategies explained in the video also occur in most mediterranean regions, including the Mediterranean Basin (i.e., from Portugal to Syria).

Video “Surviving fire in the Florida scrub”, also available in youtube.

[Versión en español]

El fuego es un factor ecológico clave en muchos matorrales mediterráneos [1,2]. Pero hay otro matorral, el matorral de la Florida, que comparte muchas características con los ecosistemas mediterráneos. El fuego también es frecuente en este matorral, y la mayoría de las estrategias de las plantas para persistir después de incendio son las mismas que las que se encuentran en los ecosistemas mediterráneos, a pesar de que las especies son diferentes (con ejemplos de evolución convergente). El matorral de Florida aparece en suelos arenosos en la península de la Florida (EEUU), en clima subtropical.

Eric Menges, ecólogo en la Estación Biológica Archbold en Florida, explica en este video de 16 minutos los principales estrategias adaptativas de las plantas para vivir en el matorral de Florida. En sus palabras, “la falta de fuego es una perturbación más importante que el fuego”. Todas las estrategias explicadas en el video también ocurren en la mayoría de las regiones mediterráneas, incluida la Cuenca Mediterránea (de Portugal a Siria, pasando por España, claro).

 

References

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]

[2] Pausas J.G. 2012. Incendios forestales. Una visión desde la ecología. Catarata-CSIC. [Libro]

 

Ecology and Evolution in 3D or how to treat fire blindness

May 18th, 2018 No comments

The biophysical pressures shaping the ecology and evolution of species can be broadly aggregated into three dimensions [1]: environmental conditions, disturbance regimes, and biotic interactions (Fig. 1A). In many cases several of these dimensions need to be considered to adequately understand the habitat and functional traits of species when working at broad spatial or phylogenetic scales. However, it is currently common to consider only one dimension even when studying large clades, and in some cases, the dimension selected may not be the most relevant for a realistic understanding of ecological and evolutionary processes. We illustrate this problem with reference to the large and iconic plant family, Proteaceae [1]. This family can be considered the product of a long history of harsh environments, recurrent fires and strong faunal interactions (Fig. 1B). Because most Proteaceae species occur in fire-prone ecosystems and possess fire-adaptive traits that are both ancient and essential for their survival, disturbance by fire is likely to explain much of this family’s ecology, evolution, and biogeography. Thus studies of this family that are based on environmental variables only, are likely to make a poor contribution to their ecology and evolution. Failure to recognize the prominent role of fire (‘fire blindness’) is likely to result in a misunderstanding of the key evolutionary processes behind the ecological patterns. To make satisfactory progress, we need to overcome the traditional view that vegetation patterns can be explained solely through climate and soils, and to recognize plant consumers (fire & large herbivores) as potent evolutionary forces [2] and a key factor in explaining the ecology, distribution and diversity of many species [3]. In fact, I would propose to add the following term in fire glossaries and fire terminology resources:

Fire blindness: failure to recognize the prominent ecological and evolutionary role of fire in fire-prone ecosystems (Pausas & Lamont 2018). 

Figure 1: The evolutionary pressures that shape the phenotype and genotype of an organism can be aggregated into three dimensions (A): environmental factors (e.g., climate, soils, topography), disturbances, and biotic interactions; each of these dimensions is related to a particular set of traits. In the case of the Australian Proteaceae (B), the factors determining these three dimensions define the characteristics of most species (sclerophyllous species; patterned area); excluding one dimension (fire) define the few Proteaceae species that occur in non-fireprone ecosystems (dots, and figure 2 left). From [1].
 

Figure 2: Proteaceae species richness in Australia by cells of 1 degree. Left: genera in non-fire-prone vegetation (rainforest and vine forest). Right: genera in fire-prone vegetation (sclerophyll shrubland, woodland and forest, and savanna grassland). Proteaceae without fire would be confined to the rainforest fringes and depauperate in species instead of the dominant position it currently occupies throughout the Australian continent. From [1].

References

[1] Pausas J.G., Lamont B.B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae Journal of Biogeography. [doi | pdf]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | pdf]

[3] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecology and Biogeography 26: 889–897. [doi | pdf]  

 

Marjal del Moro postfire

May 3rd, 2018 No comments

‘Marjal del Moro’ is a small coastal wetland located in the municipalities of Puçol and Sagunt (Valencia, Spain). It is a Special Area of Conservation (SAC; ZEC in Spanish) and a Special Protected Area for the conservation of birds (SPA; ZEPA in Spanish), of the European Union. In January the 4th a wildfire burned 320ha which is ca. 80% of the wetland. Here are some dynamics after the fire.

1 month after the fire (18th February 2018):

At this time, Tamarix trees (salt ceder) were not resprouting, but some other plants already started to resprout (click to enlarge):

 

4 months after fire (1st May 2018):

Note that the two trees (salt ceders, Tamarix) are the same ones from the picture above (taken in February). At this time, Tamarix species were already resprouting (click to enlarge):

 

Thanks to E. Laguna for his help on the species identification.

 

Objeción a los gastos militares (renta 2017)

April 29th, 2018 No comments

Como cada año, los que vivimos en España realizamos estos días la declaración de la renta. Y esta es una buena oportunidad para quejarse de los excesivos gastos militares que nuestro gobierno realiza; ¡hay muchas otras prioridades antes que gastar millones de euros en armamento militar! Una manera de quejarse, es realizando la objeción fiscal al gasto militar. Podéis encontrar mucha información en la web (por ejemplo, aquí, aquí); a continuación os indico como la hago yo. Pasos a seguir:

  • Realizar la declaración de la renta de manera normal, con aplicación Renta WEB.
  • Una vez finalizada la declaración, ir al subapartado “Retenciones y demás pagos a cuenta” (este año está en la página 17(I); se llega fácilmente desde la página de resumen). En una de las casillas que no utilices, cualquiera, se pone la cantidad a desviar. Por ejemplo, en la casilla 567 (“Cuotas del impuesto sobre la renta de no residentes”) ponemos 100 euros (o lo que se quiera desviar  [1]). ¡Así de fácil!
  • Si vuestra declaración os salía a pagar (positiva), ahora os saldrá a pagar 100 euros menos (en este ejemplo); si os salía a cobrar (negativa), ahora os saldrá a cobrar 100 euros más.
  • Finalizar la declaración de manera normal (primero ir a ‘Validar’, y después a ‘Presentar declaración’)
  • Ingresar la cantidad desviada (los 100 euros del ejemplo) a una ONG. Algunas asociaciones que promueven y apoyan la objeción, hacen anualmente sugerencias de posibles ONGs a ingresar, pero se puede realizar en cualquiera; una ONG que creas que realmente lucha a favor de la paz y para crear un mundo mejor (desarme, justicia social, solidaridad, protección del medio ambiente, etc.).
  • Enviar una carta al registro una oficina de Hacienda (por ejemplo, al Registro General del Ministerio de Hacienda, c/ Alcalá, 9. 28071, Madrid) en la que se explica los motivos de vuestro desvío a una ONG y adjuntar el justificante del ingreso. Aquí hay un ejemplo de carta:  descargar doc. Se puede incluir también una copia impresa de la declaración donde se tacha el texto de la casilla 567 y se pone (a mano) “Por objeción a los gastos militares”.
  • Para las estadísticas, es conveniente avisar que se ha realizado la objeción fiscal, rellenado este formulario, o contactando con tu asociación antimilitarista local (en Valencia: mocvalencia.org).

[1] Recordar que lo importante no es la cantidad exacta a desviar, si no el realizar un gesto cívico y comprometido por la paz; incluso desviando 1 euro ya es una acción útil.

Más información:  grupotortuga.com | nodo50.org/objecionfiscal | mocvalencia.org | antimilitaristas.org (insumissia)

Doñana postfire – Doñana posincendio

April 2nd, 2018 No comments

[English version]

Last summer, between Jun 24 and Jul 4 (2017), a wildfire burned ca. 10,000 ha of the Doñana Natural Park (Las Peñuelas fire, Moguer, Huelva, Spain); the fire did not affect the adjacent Doñana National Park (National P. + Natural P. = 108,000 ha). Most of the area burned was a shrubland in a fixed dune system that had been afforested with Pinus pinea during the early 20th C. Now, nine months after fire, there are many plants from the original shrubland that are resprouting and many seeds germinating (pictures below); most of the pines are dead with very poor or null regeneration, so part of the afforestation (which is much larger than this fire) is lost.

From the ecological point of view, this fire provides an opportunity to replace part of the afforestation with the natural shrubland, and thus the wildfire may help to restore the original ecosystems and their biodiversity. This ecosystem will also benefit from having more water available, as tree consume a lot of water. In addition, future fires occurring in the shrubland without the tree layer would be also less intense. Consequently, the regenerating shrubland will be more natural and more resilient to future fires than the prefire pine woodland.

 

[Versión en español]

El verano pasado, entre el 24 de junio y el 4 de julio (2017), un incendio afectó ca. 10.000 ha del Parque Natural de Doñana (incendio de Las Peñuelas, Moguer, Huelva, España); el fuego no afectó al Parque Nacional de Doñana adyacente al parque natural (P. Nacional + P. Natural = 108.000 ha). La mayor parte del área quemada era un matorral en un sistema de dunas fijas en el que se había plantado pinos (Pinus pinea) a principios del siglo XX. Ahora, nueve meses después del incendio, hay muchas plantas del matorral original que están rebrotando y muchas semillas germinando (ver fotos); la mayoría de los pinos están muertos y presentan una regeneración muy pobre o nula, por lo que una parte de la repoblación de pinos (que era mucho más grande que este incendio) ha desaparecido.

Desde el punto de vista ecológico, este incendio brinda la oportunidad de reemplazar la repoblación por el matorral natural y, por lo tanto, el incendio pueden ayudar a restaurar los ecosistemas originales y diversos de Doñana. Estos ecosistemas también se beneficiarán de una mayor disponibilidad de agua, ya que hasta ahora una parte era consumida por los pinos. Además, los incendios futuros que ocurran en estos matorrales sin pinos serán menos intensos. En consecuencia, el matorral en regeneración será más natural y más resiliente a los incendios futuros que el pinar anterior.

 

Reflexiones para la restauración posincendio en Chile

March 28th, 2018 No comments

A principios de septiembre de 2017, tuve la oportunidad de visitar algunas de las zonas afectadas por los grandes incendios ocurridos en Chile durante el verano austral (finales del 2016 e inicios del 2017). Aquí un resumen de esa visita.

Algunas reflexiones de esa visita:

Pausas J.G. 2017. Reflexiones para la restauración ecológica: visita a las zonas afectadas por incendios en la región de O’Higgins (Chile central). Chile Forestal, 387:51-53 [pdf | conaf]

 

Vídeo ilustrativo (realizado por la CONAF):

 

Ejemplos de la regeneración de la vegetación nativa: rebrotes 7 meses posincendio (pinchar para ampliar)

 

Regeneración de las plantaciones: 7 meses posincendio

 

Más información sobre incendios forestales en Chile

Agradecimientos: Cristian Ibáñez (Unversidad de La Serena), Andrés Meza (CONAF), Susana Paula (Universidad Austral)

Francesc Pausas

March 24th, 2018 1 comment

Francesc (Francisco) Pausas Coll, Barcelona 1877 – 1944, was the brother of my great grandfather. He was a painter, specialized in portraits, that lived and worked in Barcelona, Paris, New York and La Habana. Most of his paintings are spread in many private collections; the only ones that I know they are in public exhibition are:

Perhaps there are some more is Cuban museums (?). Below are the 4 paintings from him that I have at home (click on the image to enlarge it).

If you know of any other work by him, please let me know.

 

More information  |  Más información (ES)  |  Més informació (CAT)

 

Types of resprouters

February 2nd, 2018 No comments

Many plants resprout after disturbance; there is a diversity of way in which a plant can resprout as there is a diversity of bud-bearing structures that form bud banks [1,2]. We can classify resprouters as follows [1,2]:

Basal resprouters

  • Species resprouting from buds located belowground in non-woody (fleshy or fibrous) swellings like bulbs, corms, non-woody rhizomes, stem tubers, root tubers or belowground caudex. They are specially common (but not exclusive) in monocots and ferns, and are characteristic of the geophyte growth form. They occur in many ecosystems, often tied to seasonal stresses. They are abundant in many fire-prone ecosystems, with remarkable examples of species with fire-stimulated flowering [3].
  • Species resprouting from an specialized underground woody structure like a basal burl (lignotuber, xylopodium) or a woody rhizome. They define the geoxyle growth form (see below) and are strongly tied to fire-prone ecosystems.
  • Species that resprout from a non-specialized basal structure like roots and the root crown. They occur in many ecosystems, not only fire-prone ones.

Aerial resprouters (aeroxyles)

  • Some trees resprout from buds located along the stems, even after relative intense fire (crown-fire); these are epicormic resprouters [2]. The buds are protected from the heat of the fire by a thick bark [4] or are well sunken in the stem (eucalypts). They are typical of some fire-prone ecosystems [2].
  • Some plants (e.g., palms, tree ferns, cycads) resprout after fire from the stem apex: apical resprouters. This is not a typical resprouting from dormant buds, but from the original apical bud that survived thanks to the protection by leaf bases and scales.

The term geoxyle was used by some early botanists [5,6] for a plant growth form with large woody underground structures and with an aboveground biomass of only a few years’ duration. Latter, the term geoxylic suffrutice was proposed for these plants with deciduous or short-lived shoots with a massive underground structure [7] (also termed ‘underground trees’). Consequently, the term geoxyles can be applied to any plant with a massive underground woody structure (e.g., xylopodium, lignotuber, woody rhizomes [1]), and suffrutescent geoxyles to those with herbaceous seasonal stems, typically lignified at the base. Many savanna plants are suffrutescent geoxyles (e.g., Fig. 1). Many mediterranean plants are shrub geoxyles like the lignotuberous species ([6] and Fig. 2), or the shrubby oaks that have woody rhizomes (Quercus coccifera, Q. gambelli). Given the large underground structure of geoxyles, they are very good postfire resprouters and live mostly in fire-prone ecosystems; i.e., the geoxyle growth form is likely an adaptation to fire-prone environments [1,9].

Fig. 1. Andira laurifolia (suffrutescent geoxyle, underground tree) showing the underground woody rhizomes (from Warming 1893 [10]). See also Fig. 3 below.

Fig. 2. Arctostaphylos glandulosa (shrub geoxyle) showing the lignotuber (from Jepson 1916 [11])

 

Fig. 3. Seasonal dynamics of a suffrutescent geoxyles with a woody rhizome and seasonal shoots. From [12].

 

References

[1] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B., Fidelis A. 20.18 Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist  [doi | pdf | suppl. | BBB database]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | sciencedirect | pdf]

[3] Fire-stimulated flowering

[4] Pausas, J.G. 2015. Bark thickness and fire regime. Funct Ecol 29:317-327. [doi | pdf | suppl.]

[5] Lindman C.A.M. 1914. Nagra bidrag till fragan: buske eller trad? K. Vetenskapsakademiens Arsbok 12, Upsala. (mentioned in [6])

[6] Du Rietz GE. 1931. Life-forms of terrestrial flowering plants. Acta Phytogeogr. Suecica 3: 1-95.

[7] White F. 1977. The underground forest of Africa: a preliminary review. Singapore Gardens’ Bulletin 24: 57-71.

[8] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology 217: 661-676. [doi | pdf | suppl.]

[9] Lamont BB, He T, Pausas JG. 2017. South African geoxyles evolved in response to fire; frost came later. Evolutionary Ecology 31: 603–617. [doi | pdf | suppl.]

[10] Warming E. 1893. Lagoa Santa: étude de géographie botanique. Revue Générale de Botanique 5: 145-158, 209-233. 

[11] Jepson WL. 1916. Regeneration in manzanita. Madroño 1: 3-12.

[12] Bond WJ. 2016. Ancient grasslands at risk. Science 351: 120-122.

More on resprouting

 

Fire-dependent and fire-adapted animals

January 17th, 2018 No comments

Plants show a plethora of adaptive traits for persisting under recurrent fires [1]. However, fire-prone ecosystems also harbor a rich fauna, and little is know about their adaptive traits for fire survival. In a recent paper [2] we review this issue and suggest that many animals are adapted to the open habitats generated by fire; yet although they require fires for survival (fire-dependent animals), they do not necessarily show any specific morphological adaptation to fire. However, these species would become very rare or even extinct in the absence of fires generating their habitat. In addition, in some cases, animals from these fire-prone ecosystems show specific fire adaptation (fire-adapted animals). Currently, there are few examples of morphological adaptations to fire in the animal kingdom (reviewed in [2]). In part this may simply reflect the low number of studies that have attempted to look for fire adaptations. We propose that there remains significant scope for research on fire adaptations in animals, and especially in relation to the rich behavioral traits that allow persistence in fire-prone ecosystems. This is because, in contrast to plants, most animals are unitary organisms with reduced survival when directly burnt by fire, but are mobile and can move away from the fire. That is, behavioral traits are poorly explored under the framework of the evolutionary fire ecology and may provide a rich source for fire adaptations. Developing this understanding is critical to better understand the role of fire in determining the biodiversity of our landscapes.

Photo 1: An owl hunting in the fire front (fire-foraging) at Aransas National Wildlife Refuge in Texas (Photo: Jeffrey Adams/USFWS; from www.fws.gov).

 

Photo 2: The rhea (Rhea americana) is a flightless bird living in Brazilian savannas; it has a cryptic colors in postfire environments, when it sits in the ground in cannot be differentiated from burn stems (Photo: JG Pausas, 2009).

 

References

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]

[2] Pausas J.G., Parr C.L. 2018. Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology. [doi | pdf]  

More on fire and evolution

 

A diversity of Belowground Bud Banks (BBB) for resprouting

January 15th, 2018 No comments

Many plants are able to survive recurrent disturbance by resprouting from a bud bank. In fire prone ecosystems, plants must protect their buds from fire heat or perish. One way to protect them is by growing a thick insulating bark or sink the buds in the stem [1,2]. Another way is to locate the buds below ground, as soil is an excellent heat insulator (belowground bud bank or BBB). In fire-prone ecosystems, there is a diversity of ways by which plants successfully conceal their buds below ground that enable them to survive and resprout vigorously after fire [3]. There are at least six locations where belowground buds are stored [3]: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs (figure below). Considering their history and function, these organs may be divided into three groups:

(a) Those that originated in the early history of plants and that currently are widespread; they act as a resprouting source after a range of disturbances, not just fire. These include bud-bearing roots and root crowns.

(b) Those that also originated early and have spread mainly among ferns and monocots; they are often tied to seasonal stresses and have been highly successful under recurrent fire regimes. Theses include non-woody rhizomes and a wide range of fleshy underground swellings. They are characteristic of the geophyte growth forms occurring in many ecosystems, often tied to seasonal stresses; they have been highly successful under recurrent fire regimes.

(c) And those that originated later in history and are strongly tied to fire-prone ecosystems. These are woody rhizomes, lignotubers and xylopodia. They are characteristic of the geoxyle growth form.

Recognizing the diversity of BBBs is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances.

Figure: Stylized diagrams of 16 belowground bud bank structures that enable plants to resprout postfire (highlighted in red). Broken horizontal line indicates position of soil surface. Structures characterized by woody tissues, in pink; fleshy tissues, in blue; and neither woody nor fleshy, in orange (usually highly sclerified primary tissues, fibrous or ‘wiry’). Shoots highlighted in apple green: stems with leaves, branched; leaves only, unbranched. Roots highlighted in olive green: triangular-shaped roots indicate a primary system, those arising directly from the bud-storing structures are adventitious. Drawings from [3]. From top left to bottom right:

· Xylopodium (in red) joined to tuberous root (in blue); Lignotuber; Root Crown; Woody Rhizome, here arising from a burl
· Bud-bearing lateral Root arising (here) from a burl (the root is not necessarily woody); Taproot Tuber; Bulb; Corm, with previous year’s corm still present
· Stem Tuber; Non-woody Fleshy Rhizome; Rhizophore (note buds are only supported by the oldest rhizophores); Adventitious Root Tuber
· Non-woody fibrous Rhizome with a monopodial arrangement leading to expansive clone; Non-woody fibrous Rhizome with sympodial arrangement leading to a caespitose habit; Stolons that produce new ramets postfire (note that it is not a BBB); Belowground Caudex

For details and a full description of each structure, see reference [3].

References
[1] Pausas J.G. 2017. Bark thickness and fire regime: another twist. New Phytologist 213: 13-15. [doi | wiley | pdf | post1, post2]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | pdf | post ]

[3] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B., Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist  [doi | pdf | suppl | BBB database]

More posts on resprouting

 

Wind-driven fires

December 26th, 2017 1 comment

We often tend to think that the main driver of fires is drought, but in many cases wind is extremely important; and the perfect combination is a strong wind after a long drought period. Foehn-type (adiabatic) winds are especially important for fires as they are fast-moving hot and dry winds that quickly dry out the vegetation, and thus they spread the fire very easily. In the recent months, we have witnessed several very destructive wind-driven fires, affecting many infrastructures and lives. Wind-driven fires are common in Southern California where the Santa Ana winds blow after the summer. They typically occur in October, although this year they came later, in December. For instance, the Thomas fire started at the early December, and has now become the largest wildfire in California history (> 110,000 ha, Fig. 1) with more than 1000 houses destroyed, more than 100,000 residents evacuated, and several fatalities. This fire has been largely driven by Santa Ana winds.

Although less frequently, there are also wind-driven fires in Northern California, the wind is called Diablo wind. This year Diablo driven fires has been particularly important and destructive; during October more than a dozen wildfires north of San Francisco had killed more than 40 people, burned approximately 65,000 ha and destroyed more than 7,000 structures (see also, washingtonpost.com, treehugger.com).

Both Santa Ana and Diablo winds are Foehn winds going down from the mountains (inland) to the coast (Santa Ana and Diablo winds at a glance). Wind-driven fires are natural in California and have been generating large fires since long ago, but the increasing population living in the wildland-urban interface is making these fire more destructive than ever. In addition, climate change is extending the fire season into the late fall and winter, increasing the probability of large fires.

Wind-driven fires have also occurred this year in north-western Iberia (Spain and Portugal), caused by the hurricane Ophelia. Typically, tropical hurricanes do not get to Europe, but this year the Ophelia touched western Europe (probably due to the warming of the ocean) and spread massive fires in Portugal and Spain that were fuelled with large poor-managed forest plantations; the ashes from these fires reached England and Ireland (Fig. 2 below).

In conclusion, global change is likely modifying wind patterns, and thus to understand new fire regimes we need to predict wind regime; however, predicting future wind regimes is more difficult than predicting temperature changes.
 

Figure 1. The beginning of the Thomas fire (started in Ventura, Southern California) was clearly driven by Santa Ana winds (Image: NASA / MODIS, December 5, 2017). This fire has grown and become the largest wildfire in California history (> 110,000 ha).

 

Figure 2. Massive October wildfires in NW Iberia were fueled by the hurricane Ophelia; smoke and ashes from these fires reached England and Ireland  (Image: NASA Terra / MODIS, October 16, 2017); see also Severe Weather Europe. You can see an animation from NASA Earth here.

 

More on fire and wind

 

Cork products

December 16th, 2017 No comments

One of the fire adaptations in some trees is a thick bark that protects stem buds and growing tissues from the high temperature of fire [1,2]. Cork oak (Quercus suber) is an outstanding example of a tree with this fire adaptation; it a Mediterranean tree that has a very thick insulating bark (the cork) that enables the tree to survive even high intensity fires and to resprout epicormically after fire [3-5]. The great characteristics of the cork, a natural, versatile and sustainable product, has made the cork a raw material for many uses. The cork is extracted from the trees every 9 to 12 years, and regrowth after that. The industrial characteristics of cork are many, including thermal and acoustic insulator, odorless, very light, elastic and compressible, with low capillarity, no toxic, imputrescible when dry, impermeable to liquid and gases, resistant to damage, non-flammable, organic, anti-static, hypoallergenic, and with natural touch. Consequently cork has been used for a wide range of products, although the most well-known cork product are the bottle stoppers. But the best is that the tree survives after cork extraction, and in fact, the use of cork justifies the conservation of private cork oak forests. The short message is: drink wines with cork stopper!

Fig. 1. The cork products that I have at home.

 Fig. 2. Other products made from cork. Photos taken in: Tunisia (A,C,D), the cork museum of Palafrugell, Girona, Spain (B, I), a shop in Tempio, Sardinia, Italy (E), the cork museum of Aggius, Sardinia, Italy (F,G,H).

References

[1] Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.]

[2] Pausas J.G. 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf

[3] Aronson J., Pereira J.S., Pausas J.G. (eds). 2009. Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration. Island Press, Washington DC. [The book]  

[4] Pausas, J.G. 1997. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 8: 703-706. [doi | pdf]

[5] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22: 1008-1015. [doi | sciencedirect | pdf]  

More on: cork oak | bark and fire |

Pinus canariensis epicormic resprouting

November 23rd, 2017 No comments

The cover of the December issue of Trends in Plant Science (22:12) is a picture of Pinus canariensis resprouting epicormically (from stem buds) 3 months after a fire in Tenerife (Canary Islands, Nov 2012). It features our review paper on this type of resprouting [1]. Many plants resprout from basal buds after disturbance, however epicormic resprouting is globally far less common, and the Canary Island pine is a very good example; it resprouts in this way even after intense crown fires.

 

[1] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | sciencedirect | pdf | post ]

More on: epicormic resprouting | pines | resprouting

 

Juniperus deppeana postfire

November 18th, 2017 No comments

Some trees species, like many Eucalyptus, resprout from a lignotuber (a basal burl [1]) when young, and from epicormic (stem) buds [2] at the adult stage. This seems also the case for Juniperus deppeana (alligator juniper), at least the ones from the Trans-Pecos region, Far West Texas, USA. Big trees can survive surface fires (Fig. 1a below) thanks to their relatively thick bark (Fig. 1b). In the upper part of the Guadalupe mountains, a fire in May 2016 spread throughout the surface, crowning in some specific spots. In these areas, smaller trees were resprouting from lignotubers (Fig. 1c) while large trees were resprouting from epicormic buds (Fig. 1d). In this dry forest in Guadalupe, Juniperus deppeana is abundant; in addition, two other conifers relatively rare in Texas are also common: Pinus ponderosa and Pseudotsuga menziesii (Douglas fir); many of the large individuals of the latter species were dead from a recent drought previous to the fire. The forest also included some oaks, both tree and shrub oak species, and an understory with grasses, Agave and Dasylirion species.

 

Figure 1. Photos of Juniperus deppeana (alligator juniper). a) A very large juniper with fire scars from surface fires (and Dylan Schwilk, Texas Tech University, in front of it). b) Detail of the bark. c) Basal stem excavated to show that postfire resprouts originates from a below-ground bud bank, a lignotuber. d) Postfire epicormic resprouting. Photos a) and b) from Davis Mountains, c) and d) from Guadalupe Mountains (1.5 years after a fire), Trans-Pecos region, Texas, November 2017.

 

References

[1] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology 217: 661-676. [doi | pdf | suppl.]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22(12): xx-xx. [doi | pdf]

More on: epicormic resprouting | lignotubers

 

Judicial independence in Spain

November 11th, 2017 No comments

Spain is going through a political tension. The government is run by a right-wind party (PP) that shows many evidences of corruption (e.g., the Gürtel case, the Bárcenas affair, the Nóos case, among many others). The second party in number of seats (PSOE, theoretically a socialist party) is not doing much opposition; the political opposition is lead by the third party (Unidos Podemos) but has not enough seats [1] to modify PP-PSOE policies.

In this situation there has been a rise of criminalization of artist, including comedians (example), singers (example1, example2) and cartoonists (example); they are been persecuted, accused and judged for their lyrics, tweets, and drawings; something that is hard to believe it is happening in the 21st century in Europe. In some cases, they are even sent to jail before the trial to prevent their “illegal” activities. Similarly is happening with Catalan politicians (example), where the Spanish government is “solving” a political conflict using the judicial system. In fact, 2017 is now considered the worst year for the freedom of speech in the Spanish democracy. All this questions to what extent the judicial system is really independent in Spain.

Using the data from the Global Competitiveness Report 2016-17 of the World Economic Forum, I have plotted the world ranking in judicial independence against the Gross Domestic Product (GDP) for Spain and other European countries (Figure below). The conclusion is that Spain has a very low judicial independence (65 in the world ranking; the top ones are Finland, New Zealand and Norway), lower than the close neighbour countries (Portugal and France), and lower than expected by their economy (i.e., in the upper part of the ranking-GDP line in the Figure).

[1] Diversidad política (3), jgpausas.blogs.uv.es/2016/07/02/

 

Inflamabilidad e incendios forestales

November 2nd, 2017 2 comments

[Una versión un poco más corta de este artículo se ha publicado en 20minutos: Ciencia para llevar-CSIC]

 

Una de las preguntas que me plantean frecuente es ¿En qué medida los incendios dependen de la inflamabilidad de las plantas? – Una respuesta corta sería que la inflamabilidad de las plantas es relevante en los incendios, pero su papel relativo depende de diversas condiciones (climáticas, topográficas, estructura del paisaje, gestión forestal, etc). Vayamos por partes:

¿Qué es la inflamabilidad?
La inflamabilidad es un concepto complejo, con diferentes definiciones y matices, pero para simplificar se puede definir la inflamabilidad como la capacidad de prender y propagar una llama. No se debe confundir con la cantidad de biomasa (la carga de combustible); es decir, una planta (o una comunidad vegetal o una plantación) es más inflamable que otra si, teniendo aproximadamente una misma biomasa, prende y propaga mejor el fuego.

¿Hay especies de plantas más inflamables que otras?
Sí. Todas las plantas son inflamables, pero unas más que otras. La gente de campo sabe que una aliaga o un brezo arde mejor que un lentisco o un alcornoque. Hay un conjunto de características de las plantas que proporcionan variabilidad en la inflamabilidad. Entre las características que incrementan la inflamabilidad nos encontramos, por ejemplo, el tener hojas y ramas finas, madera ligera, retener ramas secas o tener elevado contenido en compuestos volátiles; en cambio, tener hojas gruesas y pocas ramas, gruesas y bien separadas, reduce la inflamabilidad. Árboles con abundantes ramas basales son más inflamables que árboles en que las primeras ramas están elevadas y hay un espacio entre el sotobosque y la copa. Todas estas características no tienen por qué estar correlaciondas entre sí; las plantas pueden tener diferente grado de inflamabilidad según la escala en que se mire. Por ejemplo, hay algunas especies de pino que tienen una alta inflamabilidad a escala de hojas pero baja inflamabilidad en la estructura del árbol (copa elevada), y por lo tanto, en incendios poco intensos el fuego se propagará superficialmente, pero no alcanzará la copa (incendios de sotobosque).

¿Hay comunidades vegetales más inflamables que otras?
Sí. En algunas comunidades pueden dominar especies más inflamables que en otras, lo que por lo tanto condiciona la inflamabilidad de toda la comunidad vegetal (sea natural o una plantación). Pero además, independientemente de la inflamabilidad de las especies, hay otras características que incrementan o reducen la inflamabilidad a escala de comunidad. Entre ellas podemos mencionar, por ejemplo, la continuidad y distribución de las especies muy (o muy poco) inflamables, el número de plantas muertas (por sequía, por ejemplo), las condiciones microclimáticas que se generan dentro de la comunidad (bosques densos pueden inhibir la probabilidad de fuego), y las condiciones topográficas (una mayor humedad en depresiones topográficas reduce la inflamabilidad de las plantas). Por lo tanto, hay comunidades vegetales que se queman más fácilmente que otras. Se quema más fácilmente un aulagar o un brezal mediterráneo que un bosque denso y sombrio; o una sabana que un bosque; y los sistemas sabana-bosque tropicales son claros ejemplos de mosaicos determinados por diferente inflamabilidad.

¿La gestión forestal puede modificar la inflamabilidad?
Sí. La gestión forestal puede modificar la estructura de los árboles, de la comunidad, y del paisaje. La gestión reduce la cantidad de biomasa (el combustible), pero también la continuidad, y por lo tanto, la probabilidad de que se propague el fuego. Por ejemplo, tanto en bosques como en plantaciones forestales, a menudo se realizan cortas del sotobosque y de ramas inferiores de los árboles, o se introduce pastoreo, o se realizan quemas prescritas, todo con el objetivo de estimular el crecimiento en altura de los árboles y generar una discontinuidad vertical entre el sotobosque y la copa. De esta manera, el fuego se propaga sólo por el sotobosque, los incendios son menos intensos, y la mayoría de árboles sobrevive. En matorrales, la gestión puede reducir la biomasa, pero no es fácil reducir la inflamabilidad. Las plantaciones forestales a menudo son masas densas y homogéneas de árboles, muchas veces de especies muy inflamables (eucaliptos), y por lo tanto propensas a propagar incendios; por lo tanto, la gestión forestal es clave para reducir la cantidad de combustible y la inflamabilidad de estas plantaciones. Además, a escala de paisaje, se puede disminuir la capacidad de propagación de un incendio mediante cortafuegos y generando paisajes en mosaicos.

¿El tamaño de los incendios está determinado por la inflamabilidad de las especies?
Pues depende. En general, el tamaño de un incendio está condicionado por la cantidad, continuidad, y homogeneidad de la vegetación (sea natural o plantaciones), el grado de humedad de esta, y por el viento. La inflamabilidad también puede desempeñar un papel relevante. En incendios poco intensos, diferencias en la inflamabilidad (ya sea por cambios en la estructura forestal debidos a la gestión, o por diferencias naturales de las especies), pueden condicionar que una zona arda o no, y por lo tanto, el tamaño del incendio. En condiciones extremas de sequía y fuertes vientos, las diferencias en inflamabilidad serán poco relevantes. Igualmente, dependiendo de las condiciones, un cortafuegos puede o no frenar un incendio. Por lo tanto, la inflamabilidad de las especies es relevante en el comportamiento del fuego y el tamaño de los incendios, pero su papel relativo depende de diversas condiciones.

 

Fotos: Ejemplos de plantas con inflamabilidad contrastada.
A: La aliaga (Ulex parviflorus) es una planta muy inflamable porque casi toda la biomasa es muy fina y acumula ramas secas. Especie típica de matorrales mediterráneos.
B: Palicourea rigida, especie que sobrevive en sabanas neotropicales con incendios frecuentes gracias a su muy baja inflamabilidad (hojas muy grandes y gruesas, ramas gruesas, suberificadas y separadas).
C: Pinar de pino laricio (Pinus nigra) con árboles que tienen baja inflamabilidad (a escala de todo el árbol), ya que hay una discontinuidad entre el sotobosque y la copa, de manera que el fuego se propaga por la superficie y no llega a alcanzar las copas. Las bases negras de los troncos indican que ha pasado un incendios de sotobosque.
D: Pinar de pino carrasco (Pinus halepensis). No solo las hojas son bastante inflamables sino que la continuidad entre el suelo y las copas hace que todo el árbol y el pinar sea muy inflamable, y genere incendios intensos de copa.

 

Referencias
Pausas J.G. 2012. Incendios forestales: una visión desde la ecología. Ed. CSIC-Catarata. [libro]

Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | post1 | post2]

Más sobre inflamabilidad

 

Iberia

October 10th, 2017 No comments

Catchments of the Iberian Peninsula. This may be an appropriate regionalization for ecological studies and resource management. In fact, it will be very appropriate to have an Iberian Environmental Agency! We used a catchment-based approach in a study of fire regimes [1]. Other current approaches for regionalization include the one based of the movement of people instead of the movement of water (e.g., for USA, [2]). In any case, this is a nice colourful image of Iberia!

Iberia_riversSource: www.etsy.com

References
[1] Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082. [doi | pdf | supp]

[2] Dash Nelson, G. & Rae, A. (2016) An economic geography of the United States: from commutes to megaregions. PLOS ONE, 11, e0166083.

Postfire epicormic resprouting

September 22nd, 2017 No comments

Many plants resprout from basal buds after disturbance, and this is common in shrublands subjected to high-intensity fires [1]. However, resprouting after fire from epicormic (stem) buds is globally far less common. In a recent paper we review the ecology and evolution of this mechanism [2]. Many plants can generate epicormic shoots after light disturbances (e.g., browsing, drought, low intensity fires, insect defoliation, strong winds), but this does not mean they generally resprout epicormically after fire, as the heat of a fire may kill epicormic buds if they are not well protected (e.g., by a thick bark). The most well-known examples of epicormic resprouting are many species of eucalypts (Fig. 1A below), the cork oak (Quercus suber [3], Fig. 1B below), and Pinus canariensis ([4], Fig. 1C, D below). There are other pines and oaks that also resprout epicormically, and many species from savannas, especially those from the Brazilian savannas (cerrado) where many trees have a thick corky bark [5].

Epicormic resprouting has appeared in different lineages and on different continents and thus it is an example of convergent evolution in fire-prone ecosystems. It is an adaptation to a regime of frequent fires that affect tree crowns. It has probably been favoured where productivity is sufficient to maintain an arborescent growth form, fire intensity is sufficient to defoliate the tree canopy crown, and fire frequency is high (in conifers, too high for serotiny to be reliable) [2]. Given the high resilience of forest and woodlands dominated by epicormic resprouters, these species are good candidates for reforestation projects in fire-prone ecosystems [3].

Figure: Examples of postfire epicormic resprouting after a crown fire from very different lineages: (A) Eucalyptus diversicolor 18 months after fire in Western Australia. (B) Quercus suber woodland 1.5 years postfire in southern Portugal. (C) Pinus canariensis woodland a few years after fire; (D) epicormic resprouts of P. canariensis 3 months postfire. Photos by G. Wardell-Johnson (A); F.X. Catry (B) and J.G. Pausas (C, D), from [2].

References
[1] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytologist 209: 945-954. [doi | wiley | pdf | Notes S1-S4]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: xx-xx. [doi | pdf]

[3] Aronson J., Pereira J.S., Pausas J.G. (eds). 2009. Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration. Island Press, Washington DC. 315 pp. [The book]

[4] Pinus canariensis, jgpausas.blogs.uv.es/2017/05/07

[5] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species. Journal of Ecology 101 (5): 1265-1272. [doi | pdf | suppl.]

More information on: epicormic resprouting | cork oak | pines

Incendios Chile 2017: restauración y regeneración

September 17th, 2017 No comments

Los incendios del verano 2016/2017 en Chile central afectaron alrededor de unas 600,000 ha [1]. Ahora, y como es natural, la sociedad demanda la restauración urgente de los ecosistemas nativos afectados (>60% de la zona afectada fueron plantaciones forestales [1,2]). La restauración ecológica debe estar basada en el conocimiento, y no se debe realizar de manera generalizada y arbitraria. Una restauración inapropiada es un gasto económico innecesario y a veces incluso perjudicial para el ecosistema; por ejemplo, realizar plantaciones con maquinaria pesada en un ecosistema donde muchas plantas rebrotan después del incendio puede ser contraproducente, ya que puede limitar la regeneración natural. Por lo tanto, las acciones de restauración ecológica requieren de un diagnóstico del terreno previo [3] en el que se evalúe el potencial de erosión del suelo, el potencial de regeneración natural, y la potencial pérdida de especies (incluyendo los efectos de posibles especies invasoras posincendio). Las acciones de restauración deben ser específicas para cada una de las zonas donde se detecten estos problemas dentro del perímetro incendiado. Probablemente no se requerirá restauración alguna, aunque si un control del pastoreo, en aquellos sectores en los que no haya peligro de pérdida de suelo y la regeneración de la vegetación y de la mayoría de especies no esté comprometida. Se requieren actuaciones urgentes en zonas con pérdida potencial de suelo. Y en zonas sin riesgo de erosión, pero con pérdida de especies, se requieren acciones restaurativas a medio-largo plazo (por ejemplo, plantaciones con especies nativas).

A inicios de septiembre de 2017 (6–7 meses después de los incendios) muchas de las especies del matorral esclerófilo afectado por los incendios estaban rebrotando (fotos abajo); algunas otras estaban germinando (p.e., el tevo), aunque la mayoría de germinaciones observadas eran plantas herbáceas. También se observaron pies de especies arbustivas que no habían rebrotado (y que no se pudo determinar la especie), aunque no se puede asegurar que no lo hagan en los próximos meses. Sería interesante saber si en los sectores quemados hay especies que no rebrotan ni germinan después del incendio, pues las poblaciones de estas especies si habrían sido gravemente perjudicas por el fuego, y serían las especies a considerar en una restauración ecológica de la zona.


Fotos: Ejemplos de especies que estaban rebrotando a inicios de septiembre (7 meses después de los incendios): A: Tevo (Trevoa trinervis); B: Litre (Lithraea caustica); C: Quillaia (Quillaja saponaria); D: Bollén (Kageneckia oblonga); E: Mitique (Podanthus mitiqui); F: Patagua (Crinodendron patagua); G: Berberis sp.; H: Boldo (Peumus boldus).

Referencias
[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10/
[2] Chile 2017 fires: fire-prone forest plantations, jgpausas.blogs.uv.es/2017/09/16/
[3] Investigador aborda desafíos de la restauración ecológica tras los incendios en Chile; www.lignum.cl/2017/09/06/

Más información sobre: incendios en Chile | rebrote |

 

Chile 2017 fires: fire-prone forest plantations

September 16th, 2017 No comments

During the 2016/17 fire season in central Chile, wildfires burned about 600,000 ha, a record for the region (most of the area burned between 18-Jan and 5-Feb, 2017). Two factors are considered the main responsible of such a large area burned: (1) an intense drought with strong head waves (January was the hottest month in record), and (2) the fact that the region is covered by large and dense tree plantations that create a continuous fuel bed. The tree planted are two alien species: Pinus radiata and Eucalyptus sp., from California and Australia, respectively. Most burned area (+60%) were plantations, and if we standardize the area burned in relation to the area with each landuse in the region (plantations, native forest, grasslands, agriculture) we see that the plantations were more affected by fire than expected by their area in each region; and this contrast with the other landuses (Figure 1, [1]). That is, tree plantations were an important driver for the large area burned (highly flammable).

Interesting is that the two species planted not only are highly flammable, they also have very good (although very different) postfire regeneration mechanisms, because both are originally from fire-prone ecosystems and have adapted to coupe with crown fires. Pinus radiata have serotinous cones (closed cones that open with fire) and showed an extraordinary “natural” seedling regeneration postfire (Figure 2 top), while those eucalytps planted show epicormic (stem) resprouting that allows a quick canopy recovery (even young trees, Figure 2 bottom). All suggest that these plantations were born to burn!

Figure 1: Analysis of the areas affected by fires according to types of use (forest plantations, native forest, Scrubland + pastures, and agricultural areas), in relation to what is available in each of the 4 regions that have burned the most (V, RM, VI, VII are: Valparaiso, Metropolitana, O’Higgins, and Maule). Positive data means that fire has positively selected this type of use (it has burned more than expected by the area it occupies); the negative data indicate that fire tends to avoid such landuse. There is a strong tendency for plantations to burn more than expected according to their abundance in the landscape (positive values), while native forests, scrub, or agricultural areas are burned similar or less than expected according to their abundance (negative values). The region VII (Maule) is the most extreme in positive selection of plantations and negative of other uses. Elaborated on the basis of official SIDCO-CONAF data (Chile) [1].

 


Figure. 2. Postfire regeneration of tree plantations. Top: Extraordinary postfire seedlings regeneration of Pinus radiata (adult trees are dead). Bottom: epicormic resprouting of eucalypts (mixed with dead pines). Photos from early September (ca. 7 months after fire), in the Nilahue Barahona fire (O’Higgins region, Chile).

References

[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10

More information on:  Chile and fires | Serotiny | Epicormic resprouting

 

Socioeconomics and fire regime in the Mediterranean

August 26th, 2017 No comments

In recent decades, fires in Mediterranean Europe have become larger and more frequent. This trend has been driven mainly by socioeconomic changes that have generated rural depopulation and changes in traditional land use. This has increased the amount and continuity of vegetation (fuel), and thus an increase in the fire size and area burnt [1-3]. In a recent paper [4] we compared fire statistics of the Western Rif (Morocco) with those form Valencia (eastern Spain) to show that current fire regimes in Mediterranean Africa resemble past fire regimes in the Mediterranean Europe when rural activities dominated the landscape. The temporal fire regime shift observed in different countries of the Mediterranean Europe (from small, fuel-limited fires to drought-driven fires) can be identified when moving from the southern to the northern rim of the Basin. That is, most spatial and temporal variability in fire regimes of the Mediterranean Basin is driven by shifts in the amounts of fuel and continuity imposed by changes in socioeconomic drivers (e.g., rural depopulation). In fact, we can use rural population density as an early warning for abrupt fire regime shift. Consequently we can predict future fire regimes in North Africa, based on the trends observed in southern Europe, and we can better understand past fire regimes in Europe based on the current situation in North Africa [4].


Figure 1. Western Rif (northern Morocco) and Valencia (eastern Spain).


Figure 2. Fire-size distribution in Valencia, for the period 1880-1970 (white boxes) and for the period 1975-2014 (grey boxes), and in the western Rif (red symbols, 2008-2015). For details see [4]

References

[1] Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337-350. [pdf | doi]

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

[3] Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082. [doi | pdf | supp]  

[4] Chergui B., Fahd S., Santos X., Pausas J.G. 2017. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems [doi | pdf]

 

Fire danger, fire hazard, fire risk, …

August 5th, 2017 4 comments

Recently, a colleague ask me about the difference between fire hazard, fire risk and fire danger. I’m not an expert in these concepts, but here is my understanding of these and other related terms. In short, fire hazard is related to fuel (forestry), fire risk is often used for mapping probability of ignitions (geography) and fire danger in typically associated to weather conditions (meteorology); below is a longer answer. Feel free to improve or qualify these definitions by leaving a comments (see top right).

Fire weather: Weather conditions which influence fire ignition, behaviour, and suppression. E.g., extreme (or severe) fire weather refers to very low moisture, high temperatures and strong winds. Fire weather indices (FWI) can provide information for estimating the fire danger (see below).

Fire hazard: the degree of ease to fire ignition and propagation, and the resistance to control (given an ignition source). It depends on the quantity and continuity of the vegetation (fuel) and it is independent of the weather (in contrast to fire danger). It reflects the potential fire behaviour associated to static properties of fuel (fire hazard doesn’t change from one day to the next, in contrast to fire danger). Fire hazard reduction treatments refer to fuel treatments.

Fire risk: typically it refers to the probability of ignition, i.e., the chance that a fire might start. In can be split in lightning fire risk and human fire risk; the later typically decreases with distance to roads and increase with population density. Other authors define fire risk as potential damage (or degradation risk), and thus they include fire hazard and fire vulnerability in the concept of fire risk. Fire risk is relatively static (e.g., a zone with high fire risk), and often used to produce maps (fire risk mapping).

Fire danger: sum of the factors affecting the initiation, spread, and resistance to control in a given area; it is typically expressed as a semi-quantitative index (e.g., from very high to very low). Very often it largely depends on weather (i.e., moisture; sometimes also lightning activity) and reported by meteorological agencies. Because it considers the weather, fire danger is very dynamic (e.g. fire danger today; daily fire danger forecast). Note that if fire danger is based on weather only: (1) the fire danger may be very high in areas where the likelihood of having a fire is very low due to their low fuel (i.e., overestimation in arid ecosystems); (2) weather-based fire danger may fail to capture short-term increases in dead fuel due to strong droughts (underestimation); and consequently, (3) predictions of fire danger for the future under climatic warning may be questionable. A good prediction of fire danger should consider fire risk, fire weather and fire hazard (including fuel dynamics).

Fire damage: detrimental changes in value after a fire (e.g., ecological fire damage, social fire damage); i.e., it refers to negative fire effects. Note that fire may damage some species and favour other; also it depends on the temporal scale, as some short-term effects may be different from mid- or long-term effects.

Fire vulnerability: probability of fire damage; potential effects of fire on values. It is often presented as fire vulnerability maps. Ecological fire vulnerability is typically computed from the type of vegetation, soil and topography, to estimate postfire erosion risk and regeneration capacity.

Map of the Fire Danger Forecast for the Mediterranean region on the 5 Aug 2017 from the Global Wildfire Information System (GWIS, EFFIS-Copernicus). Darker heat colours indicate higher fire danger (green: very low). In fact, this is based on fire weather; note that it is not predicted for arid areas (white, in Africa) where the low biomass may produce extremely unrealistic results (it should probably be green). So it looks more a heat index than a fire danger index. I would also say that the palette of colors seems a bit too contrasted.

 

Postfire germination in Chile

July 22nd, 2017 No comments

In the matorral (chaparral-type vegetation) of Central Chile, natural fires are assumed to have been much less frequent (during the Quaternary) than in the other Mediterranean-type ecosystems (MTEs) of the world [1]. Thus, plant adaptive responses to fire are expected to be uncommon. Resprouting is a relatively widespread trait in Chilean woody species, although this traits is not really an indicator of the fire history as resprouters occur in many environments, not only in fire-prone ones [1,2]. Fire-stimulated germination (i.e., the increased seed germination after a heat shock or after the smoke produced by a fire) is a trait more specifically tied to fire [1,3]. A recent study [4] demonstrates that fire-stimulated germination is not as common in the Chilean woody flora as in other MTEs; i.e., negative seed responses to fire cues were more frequent than positive responses. Some seeds were damaged by fire, but many species were able to resist the heat shock although without an increase on germination. In few species, germination was stimulated (by heat or smoke), but the magnitude of the stimulation was relatively low. The overall effect is that fire-stimulated germination is poorly represented in the Chilean matorral. These results support the idea that this matorral had a history of lower fire activity than other mediterranean-climate regions, despite having a fire-prone climate. This low fire activity has been attributed to the effect of the Andes blocking many summer thunderstorms in central Chile, and thus reducing lightning and natural ignitions [1]. Lightning fires do occur in Chile, but typically further south; most current fires in central (mediterranean) Chile are of anthropogenic origin.

Two views of the Chilean matorral; left: La Campana National Park (photos: S. Gómez-González).

 

References

[1] Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press. [the book]

[2] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytol. 209: 945-954. [doi | wiley | pdf | Notes S1-S4 | Table S1]

[3] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7: e51523. [doi | plos | pdf]  

[4] Gómez-González S., Paula S., Cavieres L.A. & Pausas J.G. 2017. Postfire responses of the woody flora of Central Chile: insights from a germination experiment. PloS ONE 12: e0180661. [doi | plos | pdf]   New!

More on: fire and Chile | fire and germination |

Incendios, arte y divulgación

July 18th, 2017 No comments

1) La Fundación Pau Costa ha puesto el punto 1 del decálogo de incendios forestales (punto que escribí yo), en un marco artístico para facilitar la divulgación:

El decálogo completo en:  enlace (¡firma!) | pdf | post | English

  
2) Fragmento de la entrevista para el reportaje “Uno de los nuestros”, dirigido por Paco Quintans, y estrenado en Noviembre del 2017

El documental entero disponible está en Youfeelm.

 

3) Fragmento del documental “La Huella del fuego” del programa Crónicas, de La 2 de RTVE (28 Noviembre del 2016)

El documental entero se puede ver en: www.rtve.es/alacarta | jgpausas.blogs.uv.es/2016/11/30
 

¿Hay incendios naturales?

July 14th, 2017 No comments

A menudo me preguntan, ¿pero tu realmente crees que los incendios forestales es un fenómeno natural? Aquí intento responder a esta pregunta. Este texto apareció primero en 20minutos (Ciencia para llevar); aquí incluyo la primera versión que escribí, un poco más larga que la publicada; la principal diferencia está en el último párrafo, que por razones de espacio se recortó en la versión final en 20minutos.

 

Para que se produzca un incendio forestal se requieren tres condiciones: una ignición que inicie el fuego, un combustible continuo e inflamable, y unas condiciones de propagación adecuadas. ¿Se dan estas tres circunstancias en nuestros ecosistemas?

Empecemos por el final, las condiciones de propagación. Una de las principales características del clima mediterráneo es que la estación más seca coincide con la más cálida (el verano), cosa que no se da en la mayoría de los climas del mundo. En verano se genera un periodo relativamente largo con unas condiciones de elevadas temperaturas y baja o nula precipitación, que son ideales para que, si hay un incendio, se propague fácilmente. Además no es raro tener días de viento relativamente fuerte, seco y cálido (por ejemplo, los ponientes en la costa valenciana) que aún facilitan más los grandes incendios.

La siguiente condición es la existencia de un combustible continuo e inflamable. En la mayoría de los ecosistemas ibéricos, la vegetación es suficiente densa y continua que permite, si hay un incendio en verano, que este se pueda extender a grandes superficies. Esto es aplicable tanto a los bosques como a la gran diversidad de matorrales que encontramos en nuestro territorio. De manera que la vegetación mediterránea forma lo que a menudo se llama el combustible de los incendios forestales. No hay que olvidar que este ‘combustible’ está compuesto por una gran diversidad de seres vivos que tienen detrás una larga historia evolutiva; son parte de nuestra biodiversidad. Esta continuidad en la vegetación era especialmente evidente antes de que los humanos realizará esa gran fragmentación que se observa actualmente en nuestros paisajes, principalmente debida a la agricultura, pero también a las abundantes vías y zonas urbanas y periurbanas.

Pero con una vegetación inflamable y unos veranos secos no es suficiente para que haya incendios, se requiere una ignición inicial. Hoy en día, la mayoría de igniciones son generadas por personas, ya sea de manera voluntaria o accidental. Pero, ¿Hay igniciones naturales? La respuesta es . A menudo tenemos tormentas secas en verano, cuando las condiciones de propagación son óptimas, de manera que los rayos generados por estas tormentas pueden actuar como fuente de ignición e iniciar un incendio forestal. Tenemos muchos ejemplos de incendios generados por rayos (la mayoría sofocados rápidamente por los bomberos); y en los meses de verano, la AEMET detecta miles de rayos potencialmente capaces de generar igniciones (Figura 1).

Figura 1. Imagen del 31 de Julio de 2015 donde se muestra la localización de 12835 rayos que se registraron durante 6 horas en la Península Ibérica. Los diferentes colores indican diferentes horas, entre las 12 y las 18h. Fuente: Agencia Estatal de Meteorología.

Por lo tanto, las tres condiciones arriba mencionadas se dan de manera natural en nuestros ecosistemas, y por lo tanto podemos afirmar que sí hay incendios naturales. Pero, ¿cuantos?

Las estadísticas de incendios actuales nos dicen que los incendios generados por rayos son una minoría, comparado con la gran cantidad de incendios generados por los humanos. ¿Podría esta minoría de incendios por rayo representar la cantidad de los incendios esperables en condiciones naturales? La respuesta es no. Una gran cantidad de rayos cae en suelo sin vegetación combustible (zonas agrícolas y urbanas) y por lo tanto no producen los incendios que producirían en unas condiciones más naturales. Además, de los rayos que sí generan igniciones en el monte, la mayoría son apagados por los bomberos forestales cuando aun son solo conatos o incendios muy pequeños. Cabe recordar que nuestros bomberos apagan la inmensa mayoría de las igniciones y sólo un porcentaje muy pequeño se escapa y se transforma en los incendios que aparecen en la prensa. Y además, de los incendios que realmente progresan, la mayoría son más pequeños de lo que serían esperable en condiciones más naturales, porque los apagan los bomberos, o porque se detienen en zonas no inflamables (zonas agrícolas, urbanas, cortafuegos, etc.). Como consecuencia, las estadísticas de incendios por rayos, ya sea en número de incendios como en área afectada, no reflejan la importancia que tendrían los incendios en condiciones naturales, sino que los subestima. Algunos de los incendios que actualmente se dan por actividad humana, en realidad están sustituyendo a incendios naturales.

Es decir, en unos paisajes más naturales (con menos presión humana) que los actuales, sería de esperar que hubiese menos incendios que en la actualidad porque habría muchas menos igniciones (la actual elevada población genera muchas igniciones), pero en muchos casos, esos incendios podrías ser más grande. En cualquier caso, el balance probablemente sería de menos área afectada por incendios que actualmente; pero sí habría incendios frecuentes. A todo esto hay que añadirle que actualmente estamos cambiando el clima, de manera que la estación con incendios tienden a ser más larga, y las olas de calor más frecuentes, y todo ello incrementa la actividad de los incendios; pero ahora no entraremos en detalle en ello.

Además, hablar de condiciones o paisajes ‘más naturales’ es complicado por varias razones. ¿Cuanto hacia atrás en el tiempo son esas condiciones ‘más naturales’? Los humanos han poblado la Península ibérica desde hace muchos años, modificando las igniciones, cambiando la estructura de la vegetación, así como la cantidad y tipo de herbívoros. Esto ha llevado a continuos cambios en la cantidad y continuidad del combustible y en el régimen (frecuencia, intensidad, y estacionalidad) de incendios. Y si nos vamos a periodos antes de los humanos, tanto el clima como la cantidad y tamaño de los herbívoros (también consumidores de biomasa, como el fuego) era bastante diferente. Por lo tanto, lo importante no es si el régimen de incendios actual es ‘natural’ o no. Lo importante es si el régimen de incendios actual y futuro es ecológica y socialmente sostenible, considerando el cambio climático. Eliminar los incendios es imposible, antinatural y ecológicamente insostenible. Nuestra sociedad ha de aceptar la existencia de incendios, aprender a convivir con ellos, adaptar las estructuras y los comportamientos, y gestionar las zonas semi-urbanas y los paisajes rurales para que el régimen de incendios sea ecológica y socialmente sostenible. Esto incluye gestionar y planear la zonas semi-urbanas, la plantaciones forestales, y los parques naturales, pensando que lo normal es que un día les llegue un incendio.

Todo esto y más en: ‘Incendios forestales’ Ed. CSIC-Catarata.

[Actualización 30/7/2017] Un ejemplo: La sierra de los rayos. El País, 30 Julio 2017

Homage to Louis Trabaud

June 6th, 2017 No comments

Louis Trabaud (born in Montpellier, 2nd Feb. 1937) has recently passed away (Collioure, 16th April 2017). He was a research on plant ecology at Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) of the CNRS, France. He was a pioneer of fire ecology in the Mediterranean Basin and set the basis of this topic for the region; he was especially influential to the fire ecologist of Spain (including me), and was awarded Professor Honoris Causa by the Univeristy of León (Spain) [1]. He was also award in France as Chevalier du Mérite Agricole (Order of Agricultural Merit). As a person, Louis Trabaud was very kind and always happy to help any student.

His research was especially focused on mediterranean shrublands around Montpellier (garrigue), i.e., shublands dominated by Quercus coccifera, Cistus species, Rosmarinus officinalis, Fumana species, etc… sometimes with an overstory of Pinus halepensis. He performed the first fire experiments in the Mediterranean region to study the regeneration of these shrublands, where he recurrently burned them in different seasons to demonstrate their high resilience. He also performed the first studies in the Mediterranean Basin on heat-stimulated germination and on flammability traits. He produced many papers, some in French (the most earlier ones) and others in English, and also wrote or edited some books. The full Trabaud’s publications list (books and scientific papers) is available here.

Louis Trabaud, together with his friend Roger Prodon, organized the International Workshop on Fire Ecology in Banyuls-sur-Mer (south of France) in the years 1992, 1997, 2001; these workshops were key in building the knowledge on fire ecology for the region; they were the meeting point for all mediterranean fire ecologist; we all met there for the first time and we all have very good memories from those meetings.

Participants of the 2001 Banyuls meeting organized by Louis Trabaud (in the middle, with glasses and a pale sweater) and Roger Prodon (second from the right).

 

References
[1] Texto en memoria de Louis Trabaud, por la Universidad de León (in Spanish)

 

Incendios y biodiversidad

May 31st, 2017 No comments

El 12 de Mayo de 2017 impartí una charla titulada Incendios forestales y biodiversidad en el IVIA (Valencia), en la que expliqué las principales adaptaciones de las plantas mediterráneas a los incendios, y cómo estudiamos esas adaptaciones en el marco de la ecología del fuego. La conclusión es que el fuego explica una parte de la biodiversidad de nuestros ecosistemas. La charla tuvo cierto impacto en los medios (enlace). Aquí podéis ver la charla integra así como la discusión posterior:

Más información: www.uv.es/jgpausas | @jgpausas | Incendios forestalesFire and diversity at the global scale | Fire adaptations in Mediterranean basin plants | Evolutionary fire ecology in pines | Ulex born to burn (II) | Serotiny |

Fire and diversity

May 26th, 2017 1 comment

In a recent paper [1], we studied the relationship between plant diversity (Fig. 1a) and fire activity (Fig. 1b) for the different ecoregions of the world, and found a strong positive relationship (Fig. 2), even after taking into account productivity and other major environmental variables [1]. This is the first global assessment of the importance of fire as major determinant of species diversity. There are at least two (not mutually exclusive) mechanisms by which fire may drive plant diversity at the scale and grain considered. 1) A selective process; there is both micro and macro evolutionary evidence suggesting that fire regime can drive population divergence and diversification [2-5]. And 2) Fires generate landscape mosaics and thus more habitat types and more niches likely to be filled by different species. In fact, the two processes are linked as landscape mosaics are also appropriate frameworks for population divergences and selective processes in fire-prone ecosystems [6]. That is, our results suggest that fire generates the appropriate conditions for a large variety of plants in many regions worldwide. Or, in other words, a world without fires (if possible at all) would be less diverse.

 


Fig. 1. Maps of plant diversity (logarithm of the number of species divided by the ecoregion area) and fire activity (estimated by 15 years of remote sensing data for each ecoregions, standardized from 0 to 1) for each terrestrial ecoregion of the world. From [1].


Fig. 2. Plant diversity in each terrestrial ecoregion (number of species divided by area, log scale; Fig. 1a) plotted against an indicator of fire activity (Fig. 1b); the two lines refer to fitted lines for low and high radiative power (an indicator of fire intensity). Form [1].

References

[1] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecol. & Biogeogr. [doi | pdf | data & maps (figshare)]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol. 193: 18-23. [doi | wiley | pdf]

[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[5] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

[6] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  

 

 

Pinus canariensis

May 7th, 2017 No comments

The last post was about Pinus brutia [1] from the Eastern Mediterranean basin. Another pine of the mediterranean group (Pinaster group) is Pinus canariensis, endemic of Canary Islands, in the north west of Africa (in the Atlantic). P. canariensis have a thick bark and resprouts vigorously from stem buds (epicormic resprouting) after crown fires. In addition, it produce serotinous cones, a clear adaptation to recruit after fire [2,3]. Very few other trees have strong adaptations to both survival and regeneration postfire; P. canariensis is among the best fire-adapted trees in the world, likely to survive very different fire regimes.

Pictures of Pinus canariensis (by JG Pausas except mid-right from NASA).
· Top-left: 5 years after a crown-fire (La Palma, Canary Is.).
· Mid-left: plantation 2 years after fire (Vall d’Ebo, Alicante, eastern Spain; planted in the 50s).
· Bottom-left: Contrasted response of Pinus halepensis (left; fire-killed serotinous pine) and P. canariensis (right, resprouting) two years after fire (Alicante, eastern Spain).
· Top-, bottom-right: epicormic resprouts 3 months after fire (Tenerife, Canary Is.).
· Mid-right: a fire plume from a wildfire in La Palma (Canary Is.).

References
[1] Pinus brutia, jgpausas.blogs.uv.es, 19 Apr 2017

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411. [doi | sciencedirect | trends | pdf | For managers]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

 

Pinus brutia

April 19th, 2017 No comments

Pinus halepensis is a strongly serotinous pine [1,2] occurring mainly in the western part of the Mediterranean Basin (especially in Spain; see map below). The most phylogenetically closely related species to P. halepensis is Pinus brutia that occurs in the eastern Mediterranean Basin (mainly in Turkey). P. brutia is called ‘red pine’ in Turkish (Kızıl çam) because sometimes the upper part of the trunk is reddish (as in P. sylvestris); the leaves are pale green as in P. halepensis. In relation to their fire response strategy [3], the main differences between the two species are that P. brutia is taller, the bark is thicker and the serotiny level is lower. Our observations suggest that P. brutia have relatively few serotinous cones, and most of then are less than 4 years old; P. halepensis have a higher proportion of serotinous cones, with many of them over 5 year old (and some more than 20 year old) [1].

Distribution maps of P. halepensis and P. brutia (from Wikipedia)

 
Pinus brutia forest, serotinous cones (2 serotinous and one non-serotinous (open)), and an example of a bark of more than 5 cm thick (the gaude was too short!). Photos from SW Turkey (by JG Pausas). For an example of serotinous cones in P. halepensis, see here.

 

References
[1] Hernandez-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | pdf | supp.]

[2] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl. | blog]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Pl. Sci. 20: 318-324. [doi | pdf | blog]

Eastern Mediterranean tour, 2017

April 18th, 2017 No comments

It is a pleasure to visit the different ecosystems of Lebanon and Turkey, and to meet old students and colleagues.

Cedar (Cedrus libani) forest, Al Shouf Biosphere Reserve, Lebanon

Anatolian steppe (bushes are Astragalus), central Turkey

Pinus brutia forest, SW Turkey

Postfire flowering: Gladiolus illyricus

April 4th, 2017 2 comments

On the 4th of Sep 2016, a wildfire burnt 800 ha in Xàbia, north of Alacant (Marina Alta, eastern Spain). About 7 months later (March 2017), Gladiolus illyricus shows a spectacular blooming:

 

21-03-2017 005_sm
IMG_1363_Gladiolus-illyricus_sm
Gladiolus illyricus. Photos by: Toni Bolufer (top), Juli G Pausas (bottom)

For more examples of postfire flowering, see: jgpausas.blogs.uv.es/tag/postfire-flowering/

FireStats icon Powered by FireStats