Home > Fire Ecology > Afrotropical and neotropical savannas are different

Afrotropical and neotropical savannas are different

Savannas are typically ecosystems dominated by grasses with a variable tree density (e.g., [1]). However, the savanna biome is very large, it occurs in different continents, and includes a large variability in the vegetation structure and composition. Fire and herbivory are the main disturbance factors shaping savannas worldwide and because the different climatic conditions and the different evolutionary histories among different savannas, fire and herbivory regimes also varies among savannas. Because plants are not adapted to fire and herbivory “per se” but to specific regimes of herbivory and fire [2], we expect different strategies to cope with these disturbances in different savannas. In this framework, we have recently compared savannas from Africa and from South America (afrotropical and neotropical savannas respectively) [3]: Afrotropical savannas have a dryer climate and are more intensely grazed than neotropical savannas, and thus the amount of available fuel is typically lower in afrotropical than in the neotropical savannas. Consequently fires tend to be more intense in neotropical savannas. In afrotropical conditions, young woody plants tend to grow quickly in height to soon locate the canopy above the flame zone before the next fire, and above the browsing height. Thus these plants tend to have a pole-like or lanky architecture (the lanky strategy). In contrast, in neotropical savannas where herbivory pressure is lower they require a thick corky bark for protection against relatively intense fires (the corky strategy) [3]. Despite the two fire escape strategies appear in both Africa and South America, we suggest that the lanky strategy is more adaptive in afrotropical savannas, while the corky strategy is more adaptive in neotropical savannas [3].


Figure: Diospyros hispida A.DC. (Ebenaceae), a South American example of a plant with the corky strategy. Although the trunk was fully burned one year earlier (dark branches and trunk), the bark protected the lateral buds which enabled epicormic resprouting and the formation of lateral resprouts (light grey branches). This photo was taken in Emas National Park (cerrado ecosystem, Brazil) at the beginning of the rainy season (2011) when this deciduous plant starts to produce new leaves (Photo: V.L. Dantas). For an example of the lanky strategy see [4].

References:
[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94:2454-2463. [doi | pdf | blog]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16(8): 406-411. [doi | trends | pdf]

[3] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species Journal of Ecology 101: 1265-1272 [doi | pdf]

[4] Archibald, S. & Bond, W.J. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karoo in forest, savanna, and arid environments. Oikos, 102: 3-14.

 

  1. No comments yet.

¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 2 9 ?
 
FireStats icon Powered by FireStats