Home > Fire Ecology > Serotiny

Serotiny

November 16th, 2013 Leave a comment Go to comments

Serotiny is the delayed seed release for more than a year by retaining the seeds in a woody structure [1]. This implies an accumulation of a canopy seed bank. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat opens the cones and seeds are dispersed in the post-fire bed which is rich in resource and the competition and predation are low. It is typical of many Proteaceae and some conifers, like some pine species [1, 2; figure below].

Two recent papers analyse the serotiny of two mediterranean pines Pinus halepensis and Pinus pinaster [3, 4]. P. halepensis show higher proportion of serotinous cones than P. pinaster, but the latter retain the cones for longer [3]. The two species show high variability of serotiny within and between populations, but they show a clear pattern of higher serotiny in populations subject to high frequency of crown-fires than those living in areas where crown-fires are rare or absent. This is true either considering serotiny as the proportion of serotinous cones or as the age of the cones stored. Compared with other pines worldwide, the strength of the fire-serotiny relationship in P. pinaster is intermediate, and in P. halepensis is among the highest known [3]. For P. halepensis (the species with higher % serotiny), populations in high fire recurrence regimes have higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. This phenotypic spatial structure generated by fire could be a consequence of the spatial genetic structure of the population. The second study used genomic tools to search for a genetic association for serotiny [4]. The analysis of 384 SNPs of 199 individuals of P. pinaster (in 3 populations included in the previous study [3])  shows that 17 loci were associated with serotiny and explain all together ca. 29% of the serotiny variation found in the field. All these results adds further evidence to the emerging view that fire shapes intraspecific variability of traits and generates phenotypic divergence between populations [5, 6, 7].

Figure: Serotinous cones of Pinus pinaster (Foto: K.B. Budde)

References:

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press.  [The book]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194: 751-759. [doi | wiley | pdf (suppl.)]

[3] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356 [doi | amjbot | pdf | supp.]

[4] Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdú, M. & González-Martínez, S.C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster Aiton). New Phytologist  201: 230-241 [doi | pdf]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi] [trends] [pdf]

[6] Pausas, J. G., Schwilk, D. W. 2012. Fire and plant evolution. New Phytologist, 193:301-303. [doi | wiley | pdf]

[7] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | wiley | pdf]

 

  1. No comments yet.


¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 8 3 ?