Home > Fire Ecology > Fire drives trait divergence: smoke-induced germination

Fire drives trait divergence: smoke-induced germination

There is an increasing evidence that recurrent fires are driving within species phenotypic variability, and that different fire regimes can generate trait divergence among populations [1]. For instance, populations of the annual species Helenium aromaticum (Asteraceae) growing under different fire histories in Chile have different seed traits in such a way that the anthropogenic increase in fire frequency selected for an increasing in seed pubescence [2]. In the Mediterranean Basin there is also evidence of phenotypic divergence among populations under different fire regimes: Ulex parviflorus (Fabaceae) plants living under high fire frequency are more flammable than those growing in sites that have not suffered fires [3-5]; Pinus halepensis and P. pinaster living under high crown-fire frequency have higher serotiny that those living in areas that rarely burn in crown fires [6]

A recent paper add further examples of this fire-driven trait divergence: Vandvik et al. show that smoke-induced germination is observed in populations of Calluna vulgaris (Ericaceae) from traditionally burnt coastal heathlands of Norway but it is lacking in populations from other habitats with infrequent fires [7]. The results are also consistent with the suggestion that smoke-induced germination is a fire adaptation [8-9].


Figure: Probability of germination of Calluna vulgaris in relation to time (days) since sowing for smoke-treated (pink) and control (grey) seeds, in coastal and inland heathlands of Norway. From Vandvik et al. 2014 [7].


[1] Pausas, J. G. and D. W. Schwilk. 2012. Fire and plant evolution. New Phytologist 193 (2). [doi | pdf | blog]

[2] Gómez-González S, Torres-Díaz C, Bustos-Schindler C, Gianoli E, 2011. Anthropogenic fire drives the evolution of seed traits. PNAS 108: 18743-18747. [doi blog]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | pdf | blog]

[4] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613. [doi | wiley | pdf]

[5] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223. [doi | pdf | suppl. | data:dryad | blog]

[6] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100 (12): 2349-2356. [doi | amjbot | pdf | supp. | blog]

[7] Vandvik, V., J. P. Töpper, Z. Cook, M. I. Daws, E. Heegaard, I. E. Måren, and L. G. Velle. 2014. Management-driven evolution in a domesticated ecosystem. Biology Letters 10 (2): 20131082. [doi]

[8] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | jstor | BioOne | pdf | scribd | ppt slides | post]

[9] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi | trends | pdf]


  1. No comments yet.

¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 8 4 ?
FireStats icon Powered by FireStats