Home > Fire Ecology > Resprouting at the global scale

Resprouting at the global scale

November 2nd, 2015 Leave a comment Go to comments

Plant resprouting (i.e., the ability to form new shoots after destruction of living tissues from disturbance) is often considered a simple qualitative trait and used in many ecological studies. However, resprouting is a trait that increases fitness under many different disturbance types, occurs in a wide range of environments, is widespread in many lineages, and is morphologically very diverse. In a recent paper we review some of the complexities and misunderstandings of resprouting and highlight that cautions is needed when using resprouting ability to predict vegetation responses across disturbance types and biomes [1]. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the mediterranean biome, there are differences in functional strategies to cope with water deficit between reprouters (dehydration avoiders) and non-resprouters (dehydration tolerators) [1,2]; however, there is little research to unambiguously extrapolate these results to other biomes, and some of the extrapolations seems to be incorrect. In addition, resprouting in the mediterranean biome tends to be binary, that is, species are either resprouters or non-resprouters [3], and intermediate cases are evolutionary unstable [4]; however this is not necessary true in other biomes (e.g., in the tropics). Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration of not only resprouting but also other relevant traits (e.g., seeding, bark thickness) and the different correlations among traits observed in different biomes [5]; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome, like crown-fire mediterranean ecosystems, can guide research in other ecosystems but should not be extrapolated at the global scale.

 

Cistus-Quercus

Fig: Fire allows the coexistence of species with very different strategies: Cistus albidus seedling (left) and Quercus coccifera resprout (right) 10 months after a high intensity fire in eastern Spain (Cortes de Pallás fire, 2012, Valencia). Cistus albidus  is a drought semi-deciduous nonresprouter (obligate postfire seeder ) with a physiological drought-tolerant behavior; Quercus coccifera  is an sclerophyllous (evergreen) obligate resprouter with drought-avoiding traits [2].

References
[1] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytologist 209:945-954. [doi | pdf] — New paper!

[2] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201: 1277-1288. [doi | pdf ]

[3] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdf | esa | doi]

[4] Pausas J.G. & Keeley J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65. [doi | wiley | pdf]

[5] Pausas, J.G. 2015. Bark thickness and fire regime. Functional Ecology 29:317-327. [doi | pdf | suppl.]

 

  1. No comments yet.


¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 14 5 ?