Home > Fire Ecology > Smoke-stimulated germination (2): Shedding light through the smoke

Smoke-stimulated germination (2): Shedding light through the smoke

November 1st, 2016 Leave a comment Go to comments

There are some plants with seeds that have a dormancy period and that fire can stimulate their germination. In some species, it is the heat of the fire that breaks seed dormancy and triggers germination (heat-stimulated germination, [1, 2]). In others, germination is stimulated by chemicals produced during the combustion of the organic matter (e.g., chemicals found in the smoke and charred wood) [1, 3]; we call this process, smoke-stimulated germination [5]. That is, in fire-prone ecosystems many plants have evolved seeds with sensitivity to heat and/or to chemicals produced by fire [1, 2, 3].

There are many species from a wide phylogenetic range with smoke-stimulated germination [5]; they appear in different regions worldwide and are stimulated by different combustion-related products, both organic and inorganic [4, 5]. All this suggest that smoke-stimulated germination is a trait that has appeared multiple times during the evolution, and thus is another example of convergent evolution [5].

In the Mediterranean Basin we currently know about 67 species (from 19 families) showing a significant increase in germination in response to smoke [6]. Families with many smoke-stimulated species in this region are Lamiaceae, Ericaceae and Asteraceae. However, there is still a lot of research to be done on smoke-stimulated germination in Mediterranean Basin flora, as many species have not yet been tested; in fact, very few annuals has been tested [6] despite there is evidence from field studies (3) and from other Mediterranean regions suggesting that smoke-stimulated germination is important in annuals.

But remember, plants are not the only organisms that have evolved in response to chemicals present in the smoke, humans too! [7].

smoke-germinationFigure: Germination (proportion of seeds) in control conditions (light yellow) and after a smoke treatment (blue) for four Mediterranean species in which germination is strongly dependent on smoke: Coris monspeliensis (Primulaceae), Erica umbellata (Ericaceae), Onopordum caricum (Asteraceae) and Stachys cretica (Lamiaceae) See [6].

 

References
[1] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105: 627-635. [pdf | doi | blog]

[2] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[3] Tormo, J., B. Moreira, and J. G. Pausas. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. J. Veget. Sci. 25: 771-777. [doi | wiley | pdf | blog ]

[4] Smoke-stimulated germination, jgpausas.blogs.uv.es/2011/12/02/

[5] Keeley J.E. & Pausas J.G. (in press). Evolution of 'smoke' induced seed germination in pyroendemic plants. South African J. Bot. [doi | pdf] <- New

[6] Moreira B. & Pausas J.G. (in press). Shedding light through the smoke on the germination of Mediterranean Basin flora. South African J. Bot. [doi | pdf] <- New

[7] Smoke and human evolution, jgpausas.blogs.uv.es/2016/08/31/

  1. No comments yet.

¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 14 15 ?
 
FireStats icon Powered by FireStats