Home > Fire Ecology, General > Scale mismatch in ecology

Scale mismatch in ecology

January 2nd, 2017 Leave a comment Go to comments

A recent paper suggested that fire-vegetation feedback processes may be unnecessary to explain tree cover patterns in tropical ecosystems and that climate-fire determinism is an alternative possibility [1]. This conclusion was based on the fact that it is possible to reproduce observed broad scale patterns in tropical regions (e.g., a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire-vegetation feedback processes. We argue that this reasoning is misleading because these two mechanisms (feedbacks vs fire-climate control) operate at different spatial and temporal scales [2]. It is not possible to evaluate the role of a process acting at fine scales (e.g., fire-vegetation feedbacks) using a model designed for reproducing regional-scale pattern; i.e., there is a mismatch between the scale of the question and the scale of the approach for addressing the question. While the distribution of forest and savannas are partially determined by climate, the most parsimonious explanation for their environmental overlaps (as alternative states) is the existence of feedback processes [3,4], as has been shown in many ecosystems, not only tropical ones [4]. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire-vegetation feedbacks are complementary processes acting at different spatial and temporal scales [2].
Figure: Fire activity (based on remotely sensed data) for savannas and forests located in the range of environmental conditions where both occurs, for Africa and South America (Afrotropics and Neotropics, respectively). From [2,3].

[1] Good, P., Harper, A., Meesters, A., Robertson, E. & Betts, R. (2016) Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? Global Ecol. and Biogeogr. 25, 16-25.

[2] Pausas J.G. & Dantas V.L. 2017. Scale matters: Fire-vegetation feedbacks are needed to explain tropical tree cover at the local sacle. Global Ecol. and Biogeogr. [doiwiley | pdf]

[3] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecology Letters 19: 12-19. [doi | wiley | pdf | suppl | blog]

[4] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.] | blog]


  1. No comments yet.

¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 14 3 ?
FireStats icon Powered by FireStats