Home > Fire Ecology > A new pyroendemic annual plant

A new pyroendemic annual plant

January 21st, 2017 Leave a comment Go to comments

Recently, the annual plant Chaenorhinum rubrifolium (Plantaginaceae) has been recorded for the first time in Turkey, and it was found in a recently burned area only (8 months after a fire); no individuals were found outside the burn perimeter [1, 2]. To understand the mechanisms of germination, the authors performed a range of germination tests in which seeds were submitted to different fire-related treatments like heat shocks, smoke treatments, and the application of some chemical compounds present in the smoke (NO3, karrikinolide) or analogue to those in the smoke (mandelonitrile, a cyanohydrin type compound). The results are pretty clear (Figure below): the chemical compound of smoke break their seed dormancy and stimulates the germination [1].

Overall C. rubrifolium is a clear example of a postfire seeder species, but given their strong dependency of fire, at least in Turkey, we can call it a pyroendemic plant, that is, a plant in which seedling germination and successful recruitment is restricted to immediate postfire environments [3]. Pyroendemic annuals are common in mediterranean-climate regions [4], but they have been little studied in the Mediterranean basin [5,6].

It would be interesting to study the germination of this species from other localities (e.g., it is not rare in Spain); previous research comparing plant regeneration traits from shared species between the East and the West of the Mediterranean basin show that intraspecific variability is higher at the local scale than between distant regions [7]. At least in the West, there are some varieties of C. rubrifolium that are unlikely to be pyroendemics as the ones occurring in dune systems.
çagatay-pyroendemic-smoke
Figure: Summary of the germination response of Chaenorhinum rubrifolium to fire-related treatments: Control (untreated seeds), Heat (a range of heat shocks were tested), Smoke (mean value from a range of smoke concentrations), and different chemical compounds related to smoke: NO3 (nitrate), MAN (mandelonitrile), and KAR1 (karrikinolide). Seeds were 4 month-old; the germination for Smoke and KAR1 treatments were nearly 100% when using 2 year-old seeds (after-ripening). For details see [1].

References

[1] Tavşanoğlu Ç, Ergan G, Çatav ŞS, Zare G, Küçükakyüz K, Özüdoğru B. 2017. Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Sci. Res. [doi]

[2] Zare G., Özüdoğru B., Ergan G., Tavşanoğlu Ç. (submitted) Taxonomic notes on the genus Chaenorhinum (Plantaginaceae) in Turkey.

[3] Keeley JE, Pausas JG. 2017. Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African J. Bot. [doi | pdf]

[4] Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press. [the book]

[5] Moreira B, Pausas JG. 2017. Shedding light through the smoke on the germination of Mediterranean Basin flora. South African J. Bot. [doi | pdf] | post]

[6] Tormo J, Moreira B, Pausas JG. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. J. Veget. Sci. 25: 771-777. [doi | wiley | pdf | post]

[7] Moreira B, Tavşanoglu Ç, Pausas JG. 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia 168: 671-677. [doi | pdf | post]

 

  1. No comments yet.

¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 4 2 ?
 
FireStats icon Powered by FireStats