Archive for May, 2017

Incendios y biodiversidad

May 31st, 2017 No comments

El 12 de Mayo de 2017 impartí una charla titulada Incendios forestales y biodiversidad en el IVIA (Valencia), en la que expliqué las principales adaptaciones de las plantas mediterráneas a los incendios, y cómo estudiamos esas adaptaciones en el marco de la ecología del fuego. La conclusión es que el fuego explica una parte de la biodiversidad de nuestros ecosistemas. La charla tuvo cierto impacto en los medios (enlace). Aquí podéis ver la charla integra así como la discusión posterior:

Más información: | @jgpausas | Incendios forestalesFire and diversity at the global scale | Fire adaptations in Mediterranean basin plants | Evolutionary fire ecology in pines | Ulex born to burn (II) | Serotiny |

Fire and diversity

May 26th, 2017 1 comment

In a recent paper [1], we studied the relationship between plant diversity (Fig. 1a) and fire activity (Fig. 1b) for the different ecoregions of the world, and found a strong positive relationship (Fig. 2), even after taking into account productivity and other major environmental variables [1]. This is the first global assessment of the importance of fire as major determinant of species diversity. There are at least two (not mutually exclusive) mechanisms by which fire may drive plant diversity at the scale and grain considered. 1) A selective process; there is both micro and macro evolutionary evidence suggesting that fire regime can drive population divergence and diversification [2-5]. And 2) Fires generate landscape mosaics and thus more habitat types and more niches likely to be filled by different species. In fact, the two processes are linked as landscape mosaics are also appropriate frameworks for population divergences and selective processes in fire-prone ecosystems [6]. That is, our results suggest that fire generates the appropriate conditions for a large variety of plants in many regions worldwide. Or, in other words, a world without fires (if possible at all) would be less diverse.


Fig. 1. Maps of plant diversity (logarithm of the number of species divided by the ecoregion area) and fire activity (estimated by 15 years of remote sensing data for each ecoregions, standardized from 0 to 1) for each terrestrial ecoregion of the world. From [1].

Fig. 2. Plant diversity in each terrestrial ecoregion (number of species divided by area, log scale; Fig. 1a) plotted against an indicator of fire activity (Fig. 1b); the two lines refer to fitted lines for low and high radiative power (an indicator of fire intensity). Form [1].


[1] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecol. & Biogeogr. [doi | pdf | data & maps (figshare)]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol. 193: 18-23. [doi | wiley | pdf]

[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[5] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

[6] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  



Pinus canariensis

May 7th, 2017 No comments

The last post was about Pinus brutia [1] from the Eastern Mediterranean basin. Another pine of the mediterranean group (Pinaster group) is Pinus canariensis, endemic of Canary Islands, in the north west of Africa (in the Atlantic). P. canariensis have a thick bark and resprouts vigorously from stem buds (epicormic resprouting) after crown fires. In addition, it produce serotinous cones, a clear adaptation to recruit after fire [2,3]. Very few other trees have strong adaptations to both survival and regeneration postfire; P. canariensis is among the best fire-adapted trees in the world, likely to survive very different fire regimes.

Pictures of Pinus canariensis (by JG Pausas except mid-right from NASA).
· Top-left: 5 years after a crown-fire (La Palma, Canary Is.).
· Mid-left: plantation 2 years after fire (Vall d’Ebo, Alicante, eastern Spain; planted in the 50s).
· Bottom-left: Contrasted response of Pinus halepensis (left; fire-killed serotinous pine) and P. canariensis (right, resprouting) two years after fire (Alicante, eastern Spain).
· Top-, bottom-right: epicormic resprouts 3 months after fire (Tenerife, Canary Is.).
· Mid-right: a fire plume from a wildfire in La Palma (Canary Is.).

[1] Pinus brutia,, 19 Apr 2017

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411. [doi | sciencedirect | trends | pdf | For managers]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]


FireStats icon Powered by FireStats