Archive

Posts Tagged ‘adaptations’

Flammability and coexistence

March 3rd, 2017 No comments

In the cover of the March issue of the Journal of Ecology (105:2) there is a picture of Palicourea rigida (Rubiaceae), a plant growing in the Brazilian savannas (cerrado). It is an example of a plant that survives in a very flammable environment (grassy savanna) thanks to a set of traits conferring very low flammability, including a very low specific leave area and a thick corky bark. Grasses generates fast fires of low intensity (fast-flammable strategy), and in this environment, having low flammability is adaptive as it increases survival (non-flammable strategy). That is, different (contrasted) flammability strategies allows coexistence. For the definition of the different flammability strategies see [1].

Pausas-2017-JEcol_cover2(photo by J.G. Pausas)

 

[1] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | blog | brief]

 

Homage to Coutinho: fire adaptations in cerrado plants

February 28th, 2017 No comments

Professor Leopoldo (Léo) M. Coutinho (1934–2016; Fig. 1) from the University of Sao Paulo, Brazil, studied fire adaptations in Brazilian savannas (cerrado) during the 1970s, when very few researchers recognized fire as an evolutionary force. One of his important contribution on the cerrado ecology was on fire-stimulated flowering (Fig. 2), but he also studied serotiny, nutrient cycling, fire germination, water balance, among other topics [1,2]. However, his research is little known, partly because he was not part of the dominant Anglo-Saxon culture but also because he was ahead of his time, when fire and evolution were still distant concepts [1].

Coutinho2Figure. 1. Professor L. M. Coutinho in a Brazilian cerrado (photos by A. C. Coutinho)

Fig1_CoutinhoFigure 2: Frequency distribution of the flowering intensity index (from 0 to 4) after fire (shaded; 90 days post-fire) and in control conditions (white) in 47 species (belonging to 20 families) of a cerrado ecosystem (prepared from data in Coutinho 1976). The 31 species with the highest post-fire flowering belong to 17 different families. From [1]

References

[1] Pausas J.G. 2017. Homage to L. M. Coutinho: fire adaptations in cerrado plants. Intern. J. Wildland Fire,  [doi | pdf]

[2] Pivello, V.R. 2016. Professor Leopoldo Magno Coutinho: a visão de uma discípula. Biodiversidade Brasileira, 6(2): 4-5.

 

Heritability of serotiny (2): a molecular approach

December 2nd, 2015 No comments

Not long ago we demonstrated that serotiny (i.e., the capacity to accumulate a seed bank in the canopy until the seeds are released by fire) is an heritable trait in pines [1]. This analysis was based on a classical provenance – progeny common garden experiment. However, trait variability under controlled environmental conditions may not fully reflect the variability observed in the field, and thus this estimate of heritability may not reflect how traits respond to natural selection. This is because there is higher environmental variability in the field and also because garden experiments typically include individuals that would not survive in the field (i.e., artificially increases progeny survival) [2]. With the aim of obtaining a more realistic estimate of heritability of serotiny, we have recently estimate it directly in the field for two pine species (P. halepensis, P. pinaster) [3]. Because in the field it is not possible to construct a pedigree, we used the relatedness among individuals estimated from molecular markers (SNPs) for the same individuals from which we had estimated serotiny previously [4]. The variance in serotiny was modelled incorporating the environmental variability (climate and fire regime) using a Bayesian 'animal model'. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). The difference is not surprising because wild P. halepensis and P. pinaster populations extend over heterogeneous landscapes with large environmental variations. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire-related trait for evolutionary change in the wild [2].

Pinus patula
Fig: Serotinous cones of P, halepensis and P. pinaster can be observed in previous posts (P, halepensis, P. pinaster). The photo here shows serotinous cones of Pinus patula from central Mexico (in a foggy rainy day).

References

[1] Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.C. & Pausas, J.G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany 114: 571-577.  [doi | pdf | suppl. | blog]

[2] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20: 318-324. [doi | sciencedirect | cell | pdf]

[3] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Molecular Ecology 24: 5633–5642 [doi | pdf | suppl.]

[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356. [doi | amjbot | pdf | supp. | blog]

 

Lignotubers

November 17th, 2015 1 comment

Lignotubers are swollen woody structures located at the root-shoot transition zone of some plants; they contain numerous dormant buds and starch reserves [1]. They are ontogenetically programmed, that is, they are not the product of repeated disturbances; and thus they can be observed at very early stages of the plant development (other types of basal burls may be a response to multiple disturbances). Lignotubers enables the plant to resprout prolifically after severe disturbances that remove the aboveground biomass, thus they are considered adaptive in fire-prone ecosystems [2]. Lignotubers are not well-known in many floras because they are often below-ground (i.e., detected only after excavation) and because they are often confused by other non-ontogenetically determined basal burls; thus some reports of lignotubers in the literature are mistakes. In a recent review [1] we provide examples of species with a clear evidence of lignotubers in the Mediterranean basin, together with detailed morphological and anatomical description of lignotubers in saplings. The species with lignotuebers in the Mediterranean basin include many Erica species (e.g. E. arborea, E. scoparia, E. australis, E. lusitanica, E. multiflora), the two Arbutus species (A. unedo, A. andrachne), Rhododendron ponticum, Viburnum tinus, Phillyera angustifolia, Quercus suber (not obvious macroscopically!), Tetraclinis articulata and Juniperus oxycedrus (but not in all populations!). Please let me know (email address here) if you know of other Mediterranean basin species with lignotubers! Thanks

lignotubers
Figures: Examples of lignotubers for Mediterranean basin species. A Juniperus oxycedrus (resprouting after fire). B Viburnum tinus. C Arbutus unedo. D Quercus suber (not a clear basal swelling). E Olea europaea. F Phillyrea angustifolia (adult), G Phillyrea angustifolia (saplings). In many species (e.g., V. tinus, A. unedo and P. angustifolia) the lignotuber is only evident after excavating the root-shoot transition zone.

References

[1] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology  [doi | pdf | suppl.]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411.  [doi | sciencedirect | pdf | For managers]

 

Fire adaptations in Mediterranean Basin plants

September 7th, 2015 No comments

Few days ago a botanist colleague ask me whether there were some fire adaptations in the plants of the Mediterranean Basin, similar to those reported in other mediterraenan-climate regions. So I realised that researchers working on other topics may not be aware of the recent advances in this area. Here is my brief answer, i.e., some examples of species growing in Spain that show fire adaptations; this is by no means an exhaustive list, but a few examples of common species for illustrative purpose. You can find a description of these adaptations and further examples elsewhere [1, 2, 3, 4]. It is also important to note that plants are not adapted to fire per se, but to specific fire regimes, and thus some adaptations my provide persistence to some fire regimes but not to all [1]. That is, species that exhibit traits that are adaptive under a particular fire regime can be threatened when that regime changes.

  • Serotiny (canopy seed storage): Pinus halepensis, Pinus pinaster, with variability in serotiny driven by different fire regimes [5, 6]
  • Fire-stimulated germination: There are examples of heat-stimulated germination, like many Cistaceae (e.g., Cistus, Fumana [7, 8]) and many Fabaceae (e.g., Ulex parviflorus, Anthyllis cytisoides [7, 8]), as well as examples of smoke-stimulated germination like many Lamiaceae (e.g., Rosmarinus officinalis, Lavandula latifolia [7]) or Coris monspeliensis (Primulaceae [7]). There are also examples of species with smoke-stimulated seedling growth (Lavandula latifolia [7])
  • Resprouting from lignotubers: Arbutus unedo, Phillyrea angustifolia, Juniperus oxycedrus, many Erica species (e.g., E. multiflora, E. arborea, E. scoparia, E. australis) [4, 17]
  • Epicormic resprouting: Quercus suber [9, 10], Pinus canariensis [4]
  • Fire-stimulated flowering: Some monocots like species of Asphodelus, Iris, Narcissus [11, 12]
  • Enhanced flammability: Ulex parviflorus shows variability of flammability driven by different fire regimes [13] and under genetic control [14]. Many Lamiaceae species have volatile organic compounds that enhance flammability (e.g., Rosmarinus officinalis [16]).
  • Thick bark and self-pruning (in understory fires): Pinus nigra [3,15]

 

fireadaptations2

References

[1] Keeley et al. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406-411. [doi | pdf]

[2] Keeley et al. 2012. Fire in Mediterranean Ecosystems. Cambridge University Press. [book]

[3] Pausas JG. 2012. Incendios forestales. Catarata-CSIC. [book]

[4] Paula et al. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420-1420. [doi | pdf | BROT database]

[5] Hernández-Serrano et al. 2013. Fire structures pine serotiny at different scales. Am J Bot 100:2349-2356. [doi | pdf]

[6] Hernández-Serrano et al. 2014. Heritability and quantitative genetic divergence of serotiny, a fire persistence plant trait. Ann Bot 114:571-577. [doi | pdf]

[7] Moreira et al. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627-635. [doi | pdf]

[8] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[9] Pausas JG. 1997. Resprouting of Quercus suber in NE Spain after fire. J Veget Sci 8:703-706. [doi | pdf]

[10] Catry et al. 2012. Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7:e39810. [doi | pdf ]

[11] Postfire flowering: Narcissusjgpausas.blogs.uv.es 2 May 2015

[12] Postfire blooming of Asphodelous, jgpausas.blogs.uv.es 5 Apr 2014

[13] Pausas et al. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol 193:18-23. [doi | pdf]

[14] Moreira et al. 2014. Genetic component of flammability variation in a Mediterranean shrub. Mol Ecol 23:1213-1223. [doi | pdf]

[15] He et al. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 194:751-759. [doi | pdf | picture]

[16] Flammable organic compounds: Rosmarinus officinalis, jgpausas.blogs.uv.es 2-Oct-2015

[17] Paula et al. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology [doi | pdf | suppl. | blog]

 

How plants survive the harsh environment of Australia

June 1st, 2015 No comments

New book: Groom, P. K., and Lamont, B. B. (2015). Plant Life of Southwestern Australia. Adaptations for Survival. De Gruyter Open

Early explorers described Western Australia as ‘the most barren spot on the face of the earth’. In this book we learn that south-western Australia is one of the world’s biodiversity hotspots – not despite but because of its harsh environment. Nutrient-poor soils, frequent droughts, and recurrent fires, together with adverse fauna interactions (e.g., strong-billed cockatoos, voracious kangaroos, and the lack of efficient pollinating bees and hummingbirds) have made this region the perfect evolutionary scenario for developing a plethora of plant adaptations and assembling an hyperdiverse flora. The authors nicely describe this scenario and offer an impressive wealth of knowledge on the natural history of the region in an attractive book with abundant tables and quality full-colour pictures. One of the strengths of the book is that it brings together both biotic and abiotic factors to explain biodiversity, something uncommon in most specialised books.

Overall this is a must-read book for Australian naturalists but will also be a key reference for international ecologists interested in how plants thrive and evolve in dry, nutrient-poor, fire-prone environments. The lessons learned from this region help us understand evolutionary pathways in other dry regions worldwide.

Groom-Lamont

Evolutionary fire ecology in pines

April 1st, 2015 No comments

Fire is an ancient and recurrent disturbance factor in our planet and has been present since the origin of terrestrial plants [1]. However, demonstrating whether fire has acted as an evolutionary force is not an easy task [2]. In this context, the emerging discipline of evolutionary fire ecology aims to understand the role of wildfires in shaping biodiversity. In a recent review paper I summarize what we have learned on evolutionary fire ecology by studying the iconic genus Pinus [3]. I suggest that the study of pines has greatly increased our understanding of the role of fire as an evolutionary pressure on plants.

Macro-evolutionary studies of the genus Pinus provide the oldest current evidence of fire as an evolutionary pressure on plants and date back to ca. 125 Million years ago (Ma). Micro-evolutionary studies show that fire traits are variable within and among populations, and especially among populations subject to different fire regimes. In addition, there is increasing evidence of an inherited genetic basis to variability in fire traits. Added together, pines provide compelling evidence that fire can exert an evolutionary pressure on plants and thus shape our biodiversity. In addition, evolutionary fire ecology is providing insights to improve the management of our pine forests under changing conditions. The lessons learned from pines may guide research on the evolutionary ecology in other taxa.

pinus-serotiny
Figure: Example of trait divergence among populations living under different fire regime. Serotiny (as % of closed cones) in populations living under frequent crown fires (red boxes) and in populations where crown-fires are rare (green boxes) for two pine species, Pinus halepensis (Allepo pine, left) and P. pinaster (maritime pine, right).

References
[1] Pausas, J.G. and Keeley, J.E. 2009. A burning story: The role of fire in the history of life. Bioscience 59: 593-601. [doi | jstor | BioOne | pdf]

[2] Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J. & Bradstock, R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | sciencedirect | trends | pdf]

[3] Pausas, J.G. (2015) Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20(5): 318-324. [doi | sciencedirect | pdf]

 

Heritability of serotiny

September 29th, 2014 No comments

Evolution by mean of natural selection requires three conditions: there is variation in the trait, this variation is linked to differences in fitness, and the variation is heritable (Darwin!). In many traits we do not have reliable information for the three processes. For a serotinous species, there is evidence that the level of serotiny is variable, and specially it varies in relation to the fire regime of the population. This is because serotiny increases fitness in crown-fire ecosystems and it is not advantageous in ecosystems that do not suffer frequent fires or in ecosystems with understory fires. We recently studied how serotiny of two pine species (Pinus halepensis and Pinus pinaster) varies within population and between populations with different fire regimes and also provided a meta-analysis of the relation between serotiny and fire from other published studies [1]. We also performed a genetic association study for serotiny using SNPs and showed that 17 loci explained ca. 29% of the serotiny variation found in the field in Pinus pinaster [2], suggesting that serotiny variation have a genetic basis. In our most recent paper we provide the first estimate of heritability for a fire trait; specifically we computed the norrow-sense heritability (h2) of serotiny in Pinus halepensis using the common garden approach [3]. We also evaluated whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST – FST comparison). Serotiny showed a significant heritability (h2 = 0.20). The quantitative genetic differentiation among provenances for serotiny (QST= 0.44) was significantly higher than expected under a neutral process (FST = 0.12), suggesting adaptive differentiation. Overall we showed that serotiny is a heritable trait and that it has been shaped by natural selection driven by fire.

ph-serotiny
Figure: Serotinous cones of Pinus halepensis (Foto: J.G. Pausas)

References:

[1] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100 (12): 2349-2356. [doi | amjbot | pdf | supp. | blog]

[2] Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdú, M. & González-Martínez, S.C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster Aiton). New Phytologist 201: 230-241.  [doi | pdf | supp1 | supp2]

[3] Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.C. & Pausas, J.G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany 114: 571-577. [doi | pdf | suppl.]

 

FireStats icon Powered by FireStats