Archive

Posts Tagged ‘flammability’

Feedbacks in ecology and evolution

April 21st, 2022 No comments

Ecology and evolutionary biology have focused on how organisms fit the environment. Less attention has been given to the idea that organisms can also modify their environment, and that these modifications can feed back to the organism, thus, providing a key factor for their persistence and evolution [1]. We propose that there are at least three independent lines of evidence emphasising these biological feedback processes at different scales (figure below): niche construction (population scale); alternative biome states (community scale); and the Gaia hypothesis (planetary scale). Flammability is an example of niche construction [2], and the forest-savanna mosaics are an example of the alternative biome states [3] (figure below). 

The importance of feedback processes make us rethink traditional concepts like niche and adaptation. For instance, the idea of evolution as a process of adaptation to fit a pre-existing environment needs to be replaced by a ‘co-evolutionary’ species-environment approach. An implication is that the concept of species niche, and niche occupancy, is less relevant than traditionally thought. That is, organisms do not adapt to a pre-existing environment (available niche), they construct their environment and then both ‘co-evolve’. A higher level of fitness is the result of this coevolution. Feedbacks also provide an alternative framework for understanding spatial and temporal patterns of vegetation that differ from those based on gradual changes (e.g., gradient analysis and succession), and suggest that multi-stability and abrupt transitions in a given environment are common [3]; this also has implications for species’ niche modelling [4].

Earth is in transition to a new and warmer state due to anthropogenic forcing, and feedback thinking may help us understand the process. We suggest that incorporating feedback thinking and understanding how feedbacks may operate at different scales may help in opening our minds to key processes contributing to the dynamics and resilience of our biosphere.

Fig. 1. Examples of eco-evolutionary feedbacks at different organising levels: Niche construction (population; e.g. flammability), alternative biome states (community; forests and savannas) and Gaia (biosphere). The signs of the feedbacks indicate the most common type of feedback for each example. Evolutionary feedbacks represent the evolutionary processes at the different scales (from selection at the micro-evolutionary scale to the acquisition of key macro-evolutionary innovations). From [1].

References

[1] Pausas J.G. & Bond W.J. 2022. Feedbacks in ecology and evolution. Trends Ecol. Evol. [doi | pdf]

[2] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297. [doi | wiley | pdf]

[3] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[4] Pausas J.G. & Bond W.J. 2021. Alternative biome states challenge the modelling of species’ niche shifts under climate change. J. Ecol. 109: 3962-3971. [doi | wiley | pdf]

Wildfires in southern Chile

November 29th, 2019 No comments

Ecosystems in southern Chile are not considered among the typical fire-prone ecosystems such as tropical savannas or mediterranean ecosystems. However, natural wildfires do occur (and has occurred since long ago), during drought periods, and are part of the ecological processes of the region. Here are some examples I have just visited.

Fitzroya cupressoides (alerce in Spanish, lahuán or lawal in Mapuche) is a shade-intolerant long-lived conifer native to the Andes of southern Chile and Argentina. Fitzroya is a monotypic genus in the cypress family. It often coexist with shade-tolerant species of Nothofagus (e.g., N. nitida). The bark of Fitzroya is relatively thick, and postfire tree survival depends on the intensity of fire; fire intensity in these ecosystems is typically patchy and some trees, especially large trees, do survive (Fig. 1 below and [1]). In fact, wildfires remove the shade-tolerant trees and open the space for Fitzroya which regenerates vegetatively (from root suckers) or from seeds coming from the surviving trees. Without wildfires, it would be hard for Fitzroya to compete with shade-tolerant broad-leaved trees.

Fig. 1. Dead and surviving Fitzroya cupressoides trees after fire in Parque Nacional Alerce Costero, Chile

Araucaria araucana (araucaria) is a conifer, considered a living fossil, native to central and southern Chile and western Argentina. It is a non-flammable tree (sensu [2]) because it typically self-prune their lower branches, the crown is quite open, it has a thick bark, and their foliage is hard and difficult to burn. This very low flammability allows Araucaria to survive even in flammable environments [2]. For instance, it occurs in shrublands of Nothofagus antartica (ñirre; see Fig. 2 below); this Nothofagus is a flammable multi-stemmed shrub that has a strong basal resprouting ability. This shrubland burn with some frequency but most Araucaria tree do not get burnt (fire can leave some scars in the trunk, see Fig. 3 below and dendroecological analysis in [3]). Araucaria araucana also growth in dens forests either as dominant tree or with other trees such as Nothofagus pumilo (lenga); such forest rarely burn and the regeneration of araucaria is based on gap dynamics. In fact, the two ecosystems (the shrublands of N. antartica, and the forests of N. pumilo) are an example of alternative biome states [4,5].

Fig. 2. Araucaria araucana growing in a shurbland of Nothofagus antartica (ñirre) in the foothills of the Lanín volcano, Chile
Fig. 3. Fire scars in three araucaria alive trees in the foothills of the Lanín volcano, Chile

References

[1] Lara A, Fraver S, Aravena JC & Wolodarsky-Franke A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience, 6, 100-109.

[2] Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297. [doi | wiley | pdf]
[post-1 | post-2]

[3] González ME, Veblen TT & Sibold JS. 2005. Fire history of Araucaria–Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32:1187-1202.

[4] Pausas JG. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[5] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trend Plant Sci. [postprint]

 

Inflamabilidad e incendios forestales

November 2nd, 2017 2 comments

[Una versión un poco más corta de este artículo se ha publicado en 20minutos: Ciencia para llevar-CSIC]

 

Una de las preguntas que me plantean frecuente es ¿En qué medida los incendios dependen de la inflamabilidad de las plantas? – Una respuesta corta sería que la inflamabilidad de las plantas es relevante en los incendios, pero su papel relativo depende de diversas condiciones (climáticas, topográficas, estructura del paisaje, gestión forestal, etc). Vayamos por partes:

¿Qué es la inflamabilidad?
La inflamabilidad es un concepto complejo, con diferentes definiciones y matices, pero para simplificar se puede definir la inflamabilidad como la capacidad de prender y propagar una llama. No se debe confundir con la cantidad de biomasa (la carga de combustible); es decir, una planta (o una comunidad vegetal o una plantación) es más inflamable que otra si, teniendo aproximadamente una misma biomasa, prende y propaga mejor el fuego.

¿Hay especies de plantas más inflamables que otras?
Sí. Todas las plantas son inflamables, pero unas más que otras. La gente de campo sabe que una aliaga o un brezo arde mejor que un lentisco o un alcornoque. Hay un conjunto de características de las plantas que proporcionan variabilidad en la inflamabilidad. Entre las características que incrementan la inflamabilidad nos encontramos, por ejemplo, el tener hojas y ramas finas, madera ligera, retener ramas secas o tener elevado contenido en compuestos volátiles; en cambio, tener hojas gruesas y pocas ramas, gruesas y bien separadas, reduce la inflamabilidad. Árboles con abundantes ramas basales son más inflamables que árboles en que las primeras ramas están elevadas y hay un espacio entre el sotobosque y la copa. Todas estas características no tienen por qué estar correlaciondas entre sí; las plantas pueden tener diferente grado de inflamabilidad según la escala en que se mire. Por ejemplo, hay algunas especies de pino que tienen una alta inflamabilidad a escala de hojas pero baja inflamabilidad en la estructura del árbol (copa elevada), y por lo tanto, en incendios poco intensos el fuego se propagará superficialmente, pero no alcanzará la copa (incendios de sotobosque).

¿Hay comunidades vegetales más inflamables que otras?
Sí. En algunas comunidades pueden dominar especies más inflamables que en otras, lo que por lo tanto condiciona la inflamabilidad de toda la comunidad vegetal (sea natural o una plantación). Pero además, independientemente de la inflamabilidad de las especies, hay otras características que incrementan o reducen la inflamabilidad a escala de comunidad. Entre ellas podemos mencionar, por ejemplo, la continuidad y distribución de las especies muy (o muy poco) inflamables, el número de plantas muertas (por sequía, por ejemplo), las condiciones microclimáticas que se generan dentro de la comunidad (bosques densos pueden inhibir la probabilidad de fuego), y las condiciones topográficas (una mayor humedad en depresiones topográficas reduce la inflamabilidad de las plantas). Por lo tanto, hay comunidades vegetales que se queman más fácilmente que otras. Se quema más fácilmente un aulagar o un brezal mediterráneo que un bosque denso y sombrio; o una sabana que un bosque; y los sistemas sabana-bosque tropicales son claros ejemplos de mosaicos determinados por diferente inflamabilidad.

¿La gestión forestal puede modificar la inflamabilidad?
Sí. La gestión forestal puede modificar la estructura de los árboles, de la comunidad, y del paisaje. La gestión reduce la cantidad de biomasa (el combustible), pero también la continuidad, y por lo tanto, la probabilidad de que se propague el fuego. Por ejemplo, tanto en bosques como en plantaciones forestales, a menudo se realizan cortas del sotobosque y de ramas inferiores de los árboles, o se introduce pastoreo, o se realizan quemas prescritas, todo con el objetivo de estimular el crecimiento en altura de los árboles y generar una discontinuidad vertical entre el sotobosque y la copa. De esta manera, el fuego se propaga sólo por el sotobosque, los incendios son menos intensos, y la mayoría de árboles sobrevive. En matorrales, la gestión puede reducir la biomasa, pero no es fácil reducir la inflamabilidad. Las plantaciones forestales a menudo son masas densas y homogéneas de árboles, muchas veces de especies muy inflamables (eucaliptos), y por lo tanto propensas a propagar incendios; por lo tanto, la gestión forestal es clave para reducir la cantidad de combustible y la inflamabilidad de estas plantaciones. Además, a escala de paisaje, se puede disminuir la capacidad de propagación de un incendio mediante cortafuegos y generando paisajes en mosaicos.

¿El tamaño de los incendios está determinado por la inflamabilidad de las especies?
Pues depende. En general, el tamaño de un incendio está condicionado por la cantidad, continuidad, y homogeneidad de la vegetación (sea natural o plantaciones), el grado de humedad de esta, y por el viento. La inflamabilidad también puede desempeñar un papel relevante. En incendios poco intensos, diferencias en la inflamabilidad (ya sea por cambios en la estructura forestal debidos a la gestión, o por diferencias naturales de las especies), pueden condicionar que una zona arda o no, y por lo tanto, el tamaño del incendio. En condiciones extremas de sequía y fuertes vientos, las diferencias en inflamabilidad serán poco relevantes. Igualmente, dependiendo de las condiciones, un cortafuegos puede o no frenar un incendio. Por lo tanto, la inflamabilidad de las especies es relevante en el comportamiento del fuego y el tamaño de los incendios, pero su papel relativo depende de diversas condiciones.

 

Fotos: Ejemplos de plantas con inflamabilidad contrastada.
A: La aliaga (Ulex parviflorus) es una planta muy inflamable porque casi toda la biomasa es muy fina y acumula ramas secas. Especie típica de matorrales mediterráneos.
B: Palicourea rigida, especie que sobrevive en sabanas neotropicales con incendios frecuentes gracias a su muy baja inflamabilidad (hojas muy grandes y gruesas, ramas gruesas, suberificadas y separadas).
C: Pinar de pino laricio (Pinus nigra) con árboles que tienen baja inflamabilidad (a escala de todo el árbol), ya que hay una discontinuidad entre el sotobosque y la copa, de manera que el fuego se propaga por la superficie y no llega a alcanzar las copas. Las bases negras de los troncos indican que ha pasado un incendios de sotobosque.
D: Pinar de pino carrasco (Pinus halepensis). No solo las hojas son bastante inflamables sino que la continuidad entre el suelo y las copas hace que todo el árbol y el pinar sea muy inflamable, y genere incendios intensos de copa.

 

Referencias
Pausas J.G. 2012. Incendios forestales: una visión desde la ecología. Ed. CSIC-Catarata. [libro]

Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | post1 | post2]

Más sobre inflamabilidad

 

Flammability and coexistence

March 3rd, 2017 No comments

In the cover of the March issue of the Journal of Ecology (105:2) there is a picture of Palicourea rigida (Rubiaceae), a plant growing in the Brazilian savannas (cerrado). It is an example of a plant that survives in a very flammable environment (grassy savanna) thanks to a set of traits conferring very low flammability, including a very low specific leave area and a thick corky bark. Grasses generates fast fires of low intensity (fast-flammable strategy), and in this environment, having low flammability is adaptive as it increases survival (non-flammable strategy). That is, different (contrasted) flammability strategies allows coexistence. For the definition of the different flammability strategies see [1].

Pausas-2017-JEcol_cover2(photo by J.G. Pausas)

 

[1] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | blog | brief]

 

Flammability strategies

November 24th, 2016 No comments

We live on a flammable planet [1,2] yet there is little consensus on the origin and evolution of flammability in our flora [3]. Part of the problem lies in the concept of flammability. In a recent paper [4] we suggest that flammability should not be viewed as a single quantitative trait or metric, rather we propose that flammability has three major dimensions that are not necessarily correlated: ignitability, heat release, and fire spread rate. These dimensions define three flammability strategies observed in fire-prone ecosystems: the non-flammable, the fast-flammable and the hot-flammable strategy (with low ignitability, high flame spread rate and high heat release, respectively). The non-flammable strategy refers to plants that do not burn (or rarely) in natural conditions despite living in fire-prone ecosystems: this is because they have biomass with very low ignitability (low flammability at the organ scale) or because their plant structure does not allow the ignition of the biomass (low flammability at the individual scale). The hot- and the fast-flammable strategies refer to flammable plants with contrasted heat release and spread rate. Flammability strategies increase the survival or reproduction under recurrent fires, and thus, plants in fire-prone ecosystems benefit from acquiring one of them; they represent different (alternative) ways to live under recurrent fires. This novel framework on different flammability strategies helps us to understand variability in flammability across scales [4].

 

flammability-strategies
Figure: Conceptual model describing the three plant flammability strategies in fire-prone ecosystems. While many plants fall at intermediate levels of these axes (i.e., the null model for flammability), plants in fire-prone ecosystems benefit from being at the extremes, forming the three flammability strategies considered here. From [4]

References
[1] The-fire-overview-effect, jgpausas.blogs.uv.es/2016/09/18/

[2]  A new global fire map, jgpausas.blogs.uv.es/2013/03/06/   [doi | pdf]

[3] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytol.  194: 610-613. [doi | wiley | pdf]

[4] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297 [doi | wiley | pdf | brief for managers]

The first version of this paper was my talk at the University of Campinas, Unicamp: link

UPDATE: paper featured on the cover of J Ecol 105(2): cover | blog

 

Flammable organic compounds: Rosmarinus officinalis

October 2nd, 2015 No comments

Given an ignition source and the right environmental conditions, all plants can potentially burn. However, some plants have characteristics that make them burn more easily. The capacity to store volatile organic compounds (VOCs) such as aromatic terpenes, can be considered one of these flammability-enhancing traits (flammable organic compounds, FOCs), as has now been demonstrated for Rosmarinus officinalis [1]: The more terpenes in the leaves, the more quickly they ignite (i.e., less time to ignition) (Figure below). Other species enhance flammability by having a very fine fuel, retaining dead fuel or having a flammable canopy structure [2-5]. There is growing evidence that flammability-enhancing traits are adaptive in Mediterranean fire-prone ecosystems [2-4]. To what extent the evolutionary pressure exerted by fire could have contributed to the abundance of aromatic plants in many fire-prone ecosystems (mints, rosemary, thyme, eucalypts, etc…) remains unknown. But certainly Mediterranean ecosystems are probably the most aromatic and among the most flammable ecosystems in the world.

Rosmarinus-flammability
Figure: relation between time to ignition (given a heat source, corrected by the differences in moisture) and the contents of terpenes (here the sum of camphene, para-cymene, borneol, limonene) in leaves of a wild population of rosmary (Rosmarinus officinalis), in Eastern Spain (from [1]). The top right corner shows the epiraditor, the device for  testing for time-to-ignition (see [2]).

References
[1] Pausas J.G., Alessio G.A., Moreira B., Segarra-Moragues J.G. (in press). Secondary compounds enhance flammability in a Mediterranean plant. Oecologia. [doi | pdf]

[2] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytologist 193: 18-23. [doi | wiley | pdf] [Ulex born to burn]

[3] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613. [doi | wiley | pdf

[4] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223. [doi | pdf] [Ulex born to burn (II)]

[5] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends  Plant Sci. 20(5): 318-324. [doi | sciencedirect | cell | pdf]

 

De incendios y cipreses (4)

August 31st, 2015 1 comment

En el verano de 2012, un gran incendio afectó unas 21.000 ha en la zona de Andilla-Alcublas (Valencia). En esa zona había una pequeña plantación de cipreses que no se vio afectada por el fuego, y se extendió entre los medios de comunicación el falso mensaje de que los cipreses podían ser “ignífugos”. Ya hablamos en su día de que los cipreses de esa plantación no se quemaron porque estaban rodeados de un amplio cortafuegos, y localizados en una pequeña depresión (que aún dificulta más la propagación del fuego), tal como se puede ver en las fotografías y detalles que presenté en este mismo blog ([1], [2]). Otros cipreses en ese mismo incendio sí que ardieron (ver foto), tal como lo han hecho en otros muchos incendios.

cipreses-quemados
Foto: Cipreses quemados y muertos por el incendio ocurrido en Andilla-Alcublas (Valencia) en 2012 (foto: Mayo de 2014, cerca de Sacanyet).

En 2013 también comenté [3] que un estudio analizaba en el laboratorio la inflamabilidad de ramitas de ciprés, y concluía que aunque las hojas verdes del ciprés se pueden considerar relativamente poco inflamables, este árbol suele acumular ramas secas que son muy inflamables y, por lo tanto, representan un peligro para los incendios [4]. Estas conclusiones son coherentes con el hecho de que en algunos países esté prohibido plantar cipreses en jardines de casas que lindan con el monte, precisamente por su peligro con los incendios. Y también son coherentes con los comentarios de algunos bomberos de Valencia sobre los problemas a la hora de proteger de los incendios forestales las casas con setos de ciprés. En otras palabras, no hay ninguna base que apoye la idea de que los cipreses puedan ser útiles para la lucha contra los incendios, e incluso podrían ser contraproducentes.

Ahora, algunos medios de comunicación, siguiendo el mensaje dado en 2012, anuncian que unos investigadores “resuelven el enigma de los cipreses que resisten incendios” [5], sin mencionar la causa real: que estaban en una vaguada y rodeados de un amplio cortafuegos. Esta información se basa en un nuevo estudio sobre la inflamabilidad de los cipreses [6] que analiza diversas componentes de la inflamabilidad de estos árboles, pero no se realiza una comparación exhaustiva con otras especies; solo se compara de manera cualitativa con algún estudio previo, principalmente con pinos. En general los resultados sugieren que la inflamabilidad de los cipreses puede ser en algunos aspectos un poco menor que la de los pinos, aunque en otros puede ser igual. En cualquier caso, el estudio se basa en la inflamabilidad de las hojas, no de toda la planta, ni en el marco de un gran incendio en pleno verano, donde pequeñas diferencias en la capacidad de retener humedad son poco relevantes. Por lo tanto, aunque a las hojas les cueste un poco más generar una llama, esta diferencia no justifica la plantación de cipreses como medida de protección contra los incendios (tal como se sugiere en el estudio) por varias razones:

1) No son plantas autóctonas de la Península Ibérica y, por lo tanto, su plantación en sistemas naturales ibéricos no es aconsejable
2) No resisten los incendios. Son inflamables y no rebrotan después de ser quemados. Hay otras especies autóctonas y rebrotadoras que podrían ser más apropiados para plantar en zonas con incendios recurrentes (especies más resilientes)
3) Puede ser que les cueste más arder que a algunas otras plantas, pero cuando arden, lo pueden hacer con elevada intensidad

Esperemos que algún día deje de circular este bulo de los cipreses ignífugos.

Referencias
[1] De incendios y cipreses (1), jgpausas.blogs.uv.es 29/9/2012
[2] De incendios y cipreses (2), jgpausas.blogs.uv.es 7/10/2012
[3] De incendios y cipreses (3), jgpausas.blogs.uv.es 22/6/2013

[4] Ganteaume, A., Jappiot, M., Lampin, C., Guijarro, M. & Hernando, C. (2013) Flammability of some ornamental species in wildland–urban interfaces in southeastern France: laboratory assessment at particle level. Environ. Manage., 52: 467-480.

[5] Resuelven el enigma de los cipreses que resisten incendios, BBC Mundo 27 Agosto 2015  [y propagado en diversos medios de comunicación españoles]

[6] Della Rocca, G., Hernando, C., Madrigal, J., Danti, R., Moya, J., Guijarro, M., Pecchioli, A. & Moya, B. (2015) Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study. J. Environ. Manage., 159: 68-77.

Alternative fire-driven vegetation states

November 1st, 2014 No comments

One of the clearest pieces of evidence for the role of fire in shaping vegetation is the occurrence of alternative vegetation types maintained by different fire regimes in a given climate. The different flammability of alternative communities generates different fire feedback processes that maintain contrasted vegetation types with clear boundaries in a given environment; and fire exclusion blurs this structure. This has been well documented in tropical landscapes (e.g., [1]) that are often mosaics of two alternative stable states – savannas and forests – with distinct structures and functions and sharp boundaries. Currently, there is an increasing evidence that alternative fire-driven vegetation states do occur in other environments, including temperate forests ([2, 3] and figure below). That is, the existence of alternative fire-driven vegetation states may be more frequent than previously thought, although human activities may favour one of the states and mask the original bistability.

modelv2

Figure: Factors determining the transition between two alternative vegetation states (fire sensitive forest and fire resilient shrubland) in a temperate landscape in Patagonia. Human factors (global warming, increased ignitions, and livestock grazing) favour transition to shrublands. From [2].

References
[1] Dantas V., Batalha MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454-2463.  [doi | pdf | appendix]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. Journal of Vegetation Science 26: 4-6 [doi | pdf | suppl.]

[3] Paritsis J., Veblen T.T. & Holz A. 2014. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J. Veget. Sci., 26.

 

Proyecto VIRRA

February 28th, 2014 No comments

El proyecto “El papel del fuego en la Variabilidad Intraespecífica (fenotípica y genética) de plantas del matoRRAl mediterráneo (VIRRA)” finalizó hace unos meses. Aquí se puede ver un resumen y los principales productos de este proyecto: enlace.

Ulex parviforus_juli_sm

La aliaga (Ulex parviflorus) es una de las principales especies estudiadas en VIRRA [1, 2].

[1] Ulex born to burn, jgpausas.blogs.uv.es, 9/Nov/2011

[2] Ulex born to burn (II): genetic basis of plant flammability,  jgpausas.blogs.uv.es, 25/Jan/2014

Ulex born to burn (II): genetic basis of plant flammability

January 25th, 2014 No comments

In an previous study we found that Ulex parviflorus (Fabaceae) populations that inhabit in recurrently burn areas (HiFi populations) were more flammable than populations of this species growing in old-fields where the recruitment was independent of fire (NoFi populations) [1,2, 3]. That is, HiFi plants ignited quicker, burn slower, released more heat and had higher bulk density than NoFi plants. Thus, it appeared that repeated fires selected for individuals with higher flammability, and thus driving trait divergence among populations living in different fire regimes. These results were based on the study of plant flammability (phenotypic variability) without knowing whether plant flammability was genetically controlled. In a recent study using the same individuals [4], we show that phenotypic variability in flammability was correlated to genetic variability (estimated using AFLP loci) [figure below]. This result provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire [5]. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems.

Ulex-flam-AFLP

Figure: Relationship between flammability and genotypic variability at individual level in Ulex parviflorus (red symbols: individuals in HiFi populations; green symbols: individuals in NoFi populations). Variations in flammability are described using the first axis of a Principal Component Analysis (PCA1) performed from different flammability traits, and genetic variability is described using the first axis of a Principal Coordinate Analysis (PCo1) from the set of AFPL loci that were significantly related to flammability. See details in [4].

References
[1] Ulex born to burn, jgpausas.blogs.uv.es, 9/Nov/2011

[2] Pausas J.G., Alessio G., Moreira B., Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193:18-23 [doi | wiley | pdf]

[3] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613.  [doi | wiley | pdf]

[4] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223 [doi | pdf | data:dryad]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | trends | pdf]

 

De incendios y cipreses

September 29th, 2012 11 comments

Este verano en España circularon unas fotos de una zona incendiada (incendio de Andilla, junio/julio 2012, Valencia) donde había una grupo de cipreses que no se había afectado por el incendio (ver figura 1). Eso llevó a que muchos medios de comunicación sacaran titulares como: “Los cipreses se comportan como escudos naturales contra el fuego“, “El enigma de los cipreses ignífugos“, “¿Y si los cipreses de Jérica nos estuvieran diciendo lo que hay que hacer?“, etc… Estas noticias han llevado a que se sugiera la plantación de cipreses para la “lucha contra incendios” y la “protección de viviendas”; incluso hay organismos que ya se han comprometido a realizar plantaciones con esos fines (“La Diputación de Valencia plantará cipreses para luchar contra los incendios“, “Cipreses contra el fuego“). Estas noticias sorprenden un poco a los especialistas, ya que se sabe que los cipreses no son ignífugos, arden como todas la plantas. Se conocen otras zonas afectadas por incendios en las que había cipreses y estos ardieron (p.e., incendio de las Useres, Castellón). Además, en algunos países, como en EEUU, está prohibida su plantación en jardines situados en zonas donde los incendios son frecuentes, precisamente por el peligro que conllevan. Los setos de cipreses alrededor de casas son especialmente peligrosos. Desde el punto de vista de la biodiversidad, los cipreses no son plantas autóctonas en España, y por lo tanto, no se aconseja su plantación en medios forestales, a no ser que la razón sea de mucho peso.

Figura 1. Fotografía difundida en los medios de comunicación donde se observan los cipreses no afectados por el incendio (Andilla, julio/julio 2012). Foto extraída de “El Pais”, 12/8/2012.

El 27 de septiembre se realizó en el Jardí Botànic de Valencia un seminario sobre los cipreses de Andilla, y quedó clara la razón por la que no ardieron. Básicamente, no ardieron porque se trata de una plantación mantenida (“limpia” y podada), de manera que no tiene sotobosque, los árboles están separados entre ellos, y al ser estrechos, a pesar de ser altos, las copas no se tocan (ver figura 2). Por lo tanto, el fuego no se puede propagar dentro de la plantación. Además, la plantación está rodeada de un camino, que impide que el fuego llegue a la mayoría de los cipreses. El fuego llegó a la plantación por el suroeste (flecha roja en la figura 2), donde hay un camino ancho que hizo de cortafuegos, de manera que disminuyó mucho la intensidad del fuego a la llegada de la plantación. Por otro lado, la plantación está situada en una pequeña vaguada, hecho que dificulta aún más que llegue el fuego de manera intensa.

Figura 2. Imagen aérea de la plantación de cipreses localizada en el término de Jérica que no se afectó por el incendio originado en Andilla (Junio/Julio 2012; imagen previa al incendio descargada de www.google.maps el 28/9/2012 [ver imagen en google]). La flecha roja indica la dirección del fuego (según Raúl Quílez, del Consorcio Provincial de Bomberos de Valencia). La orientación de la fotografía difundida en la prensa (figura 1) no permite ver que se trata de una plantación sin sotobosque, con árboles distanciados y con claras discontinuidades de combustible.

Por lo tanto, no se puede decir que los los cipreses sean ignífugos, sino que la discontinuidad de combustible que había dentro y alrededor de la plantación evitó que se afectaran por el fuego; una plantación de olivos, naranjos, algarrobos, etc.  hubiera tenido el mismo efecto. Un ejemplo de una plantación de pinos que no se vio afectada por un incendio se puede ver en la figura 3. Crear discontinuidades en el combustible constituye, de hecho, una manera de limitar los incendios;  esto resulta especialmente evidente con los cultivos (figura 4), por lo tanto, no es ninguna novedad. Lo ocurrido con estos cipreses es un ejemplo de cómo los medios de comunicación pueden desorientar a la población, e incluso influir en la gestión, sin ninguna base científica o técnica.

Figura 3: Plantación de pino piñonero (Pinus pinea) que sobrevivió a un incendio en Portugal; véase el bosque del fondo quemado (Foto: J. Climent).

 

Figura 4: Fotografía de una isla agrícola dentro de una zona forestal afectada por el incendio de Cortes de Pallás/Dos Aguas (Valencia, Junio/julio, 2012; foto: JG Pausas).

Bibliografía

– Libro: Incendios forestales
– Incendios forestales en Valencia, Junio 2012: ¿Por qué? ¿Cómo evitarlos?
Life 15 days after the large fires in Valencia

Actualización:

De incendios y cipreses (1), jgpausas.blogs.uv.es 29/9/2012
De incendios y cipreses (2), jgpausas.blogs.uv.es 7/10/2012
De incendios y cipreses (3), jgpausas.blogs.uv.es 22/6/2013
De incendios y cipreses (4), jgpausas.blogs.uv.es 31/8/2015
De incendios y cipreses (5), jgpausas.blogs.uv.es 11/10/2016
De incendios y cipreses (y 6), jgpausas.blogs.uv.es 3/13/2017

The fire-climate relationship changes along the aridity gradient

May 15th, 2012 No comments

We recently analyzed the fire-climate relationship in the Iberian Peninsula (western Mediterranean Basin) [1], and found that climate shapes fire activity on a temporal scale by modifying fuel flammability (i.e., more fire during dry years; left figure below) and on a spatial scale by affecting fuel structure (i.e., more fire in productive Iberian regions). On the temporal scale, fire and climate are not linearly related, but there is a critical aridity level (i.e., the aridity threshold) above which fuels become highly flammable and area burnt increases sharply (left figure below). This aridity threshold is not universal, but rather intrinsic to each ecosystem (i.e., to its landscape structure). The drier the region, the higher the dryness level needed for switching from non-flammable to flammable conditions (right figure below), suggesting that the aridity threshold is mediated by fuel. In productive regions, an ignition may lead to a fire under relatively high moisture conditions (compared to drier regions) due to the high fuel load and connectivity. On the contrary, in dry regions, wildfires are more fuel-limited, so more extreme climatic conditions (higher aridity than in more mesic regions) are needed for fires to successfully spread. The fact that the aridity threshold is intrinsic to the ecosystem emphasizes the importance of landscape structure in determining fire-climate relationship.

Fuel structure does not depend exclusively on environmental conditions (e.g., aridity/productivity); shifts in fire activity have also been related to changes in land-use [2,3] and fire-suppression policies. Gradual historical shifts in land-use may produce abrupt changes in fuel structure across landscapes and thus, in fire activity [3]. Therefore, the fire-climate relationship changes not only with climatic conditions, but also  in response to different land uses and management practices (and often in an abrupt way).


Figure: [left:] Relation between area burnt and monthly aridity ( (PET-AET)/PET) in one of the 13 Iberian regions considered (temporal scale); vertical line indicates the location of the aridity threshold. [Right:] Relationship between the the aridity threshold and the aridity of the region, for 13 Iberian regions (Pausas & Paula, 2012 [1]).

References
[1] Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography 21: 1074-1082 [doi | pdf | supp]

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doispringerpdf | post]

[3] Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337-350. [doi | springer | pdf]

New Book: Fire in Mediterranean Ecosystems

March 13th, 2012 No comments

Finally the new fire ecology book by Keeley et al. (2012) has been published:



For more information, table of contents, etc, see here.

Cambridge UP (ukusaau), Amazon (ukusajp), eBooks

Ulex born to burn

November 9th, 2011 No comments

Recurrent fires are a strong evolutionary pressure shaping plants [1,2]. It has been hypothesized that in fire prone-ecosystems, natural selection has favoured the development of traits that enhance flammability [3]. Consistent with this idea, in a recent study [4] we found that Ulex parviflorus (Fabaceae) populations that inhabit in recurrently burn areas (HiFi populations) are more flammable than populations of this species growing in old-fields where the recruitment was independent of fire (NoFi populations). That is, HiFi plants ignite quicker, burn slower, release more heat and have higher bulk density than NoFi plants. Thus, it appears that repeated fires select for individuals with higher flammability, and thus driving trait divergence among populations living in different fire regimes. These results provide some field support for the ‘kill thy neighbour’ hypothesis [3], but they also highlighted the need for heritability studies to unambiguously demonstrate natural selection driven by fire. This study together with other studies recently commented in this blog [5, 6] are placing flammability as a fundamental trait in plant evolution.

Figure: Flammability experiments using an epiradiator [4].

References

[1] Keeley, J. E., J. G. Pausas, P. W. Rundel, W. J. Bond, and R. A. Bradstock. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16:406-411. [doi | pdf]

[2] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience [doi | jstore | pdf]

[3] Bond, W. J. and J. J. Midgley. 1995. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73:79-85.

[4] Pausas J.G., Alessio G., Moreira B., Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytologist 193:18-23 [doi | pdf]

[4′] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613. [doipdf]

[5] Pausas JG. 2011. Australia born-to-burn: a phylogenetic approach. jgpausas.blogs.uv.es, 18/March/2011 [link]

[6] Pausas JG. 2011. Fire and evolution: Cretaceous fires and the spread of angiosperms. jgpausas.blogs.uv.es, 9/Sept/2011 [link]

Fire and evolution: Cretaceous fires and the spread of angiosperms

September 9th, 2010 1 comment

Recently we have highlighted the importance of wildfires in the evolution of plants in many ecosystems worldwide [1 | previous post]. In this line, a recent paper by Bond & Scott suggest that the spread of angiosperms in the Cretaceous (145-65 Ma) was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. They suggest that Creatceous angiosperms were similar to current ruderal (weedy) species, i.e., short, with high maximum photosynthetic rates, rapid reproduction and small seeds. This fast-growing angiosperms would not only compete with regenerating gymnosperms, but would also rapidly accumulate fuel. More fuel would promote more frequent fires, which would help to maintain open habitats in which rapid growth traits of angiosperms would be most favoured, promoting rapid fuel accumulation. The authors emphasize the similitude of this “angiosperm–fire cycle” with  the grass fire-cycle that helped to spread C4 grasses in the Miocene (c. 8 Ma) [3] and with the grass fire-cycle replacing forests by invasive grasses in the modern world [4]. This would also imply that forest was slow to develop until the Eocene, when fire activity dropped to very low levels. This hypothesis could also help to explain the ancient origin of some fire traits like resprouting and the abundance and phylogenetically widespread examples of species with smoke-stimulated germination [1, 5]. In conclusion I think this is a nice and stimulating contribution to the evolution of angiosperms.

References

[1] Pausas J.G. & Keeley J.E. 2009. A Burning Story: The role of fire in the history of life. BioScience 59: 593-601. [doi | pdfpost | slides]

[2] Bond, W. J. and Scott, A. C. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188: 1137–1150 [doi]

[3] Keeley, J. E. and Rundel, P. W. 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8: 1-8.

[4] D’Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycle and global change. Annu. Rev. Ecol. Syst. 23: 63-87.

[5] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105: 627-635. [pdf | doi | blog]

Soil shapes community structure through fire

January 21st, 2010 No comments

Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

Ojeda, F., Pausas, J.G., Verdú, M. 2010. Soil shapes community structure through fire. Oecologia 163:729-735. [doi]  [pdf]

IMG_0270_Ojeda en su brezal_sm The first author in the flammable, low fertility community.