Archive

Posts Tagged ‘seeders’

Ecology and evolution in fire-prone ecosystems

February 28th, 2015 2 comments

During the last years I've been working in many topics related to fire ecology and plant evolution in ecosystems subject to recurrent fires (mainly mediterranean and savanna ecosystems). Because I believe knowledge should be spread around easily, I make my results available to the public in my web page (see publications list) and in this blog. However, having the cumulative list of paper published each year is not very convenient for people searching for a specific topic. For this reason, I'm rearranging most of my articles by topics as follows:

1. Fire history
2. Fire regime: climate & fuel
3. Fire traits (resprouting, postfire germination, serotiny, bark thickness, flammability, data & methods)
4. Fire & plant strategies (in Mediterranean ecosystems, in pines, in savannas, community assembly)
5. Fire & evolution
6. Some fire-adapted species (Pinus halepensis, Quercus suber, Ulex parviflorus)
7. Fire & vegetation modelling
8. Plant-animal interactions
9. Restoration & conservation

See: fire-ecology-evolution.html

Some papers may be repeated if they clearly fit in more than one topic; some papers, mainly old ones, do not fit well in any of these topics and have not been included (at least at the moment), they still can be found in the section of publications sorted by year. I'm still working on this rearrangement, so some modifications are possible; and any comment is welcome.
I hope this is useful for somebody!

Publications: by year | by topic | books

 

Evolutionary ecology of resprouting and seeding

July 15th, 2014 No comments

There are two broad mechanisms by which plant populations persist under recurrent fires: resprouting from surviving tissues, and seedling recruitment [1]. Species that live in fire-prone ecosystems can have one of these mechanisms or both [1]. In a recent review paper [2], we propose a model suggesting that changes in evolutionary pressures that modify adult (P) and juvenile (C) survival in postfire conditions (Fig. 1 below) determine the long-term success of each of the two regeneration mechanisms, and thus the postfire regeneration strategy: obligate resprouters, facultative species and obligate seeders (Fig. 2). Specifically we propose the following three hypotheses: 1) resprouting appeared early in plant evolution as a response to disturbance, and fire was an important driver in many lineages; 2) postfire seeding evolved under conditions where fires were predictable within the life span of the dominant plants and created conditions unfavorable for resprouting; and 3) the intensification of conditions favoring juvenile survival (C) and adult mortality (P) drove the loss of resprouting ability with the consequence of obligate-seeding species becoming entirely dependent on fire to complete their life cycle, with one generation per fire interval (monopyric life cyle). This approach provides a framework for understanding temporal and spatial variation in resprouting and seeding under crown-fire regimes. It accounts for patterns of coexistence and environmental changes that contribute to the evolution of seeding from resprouting ancestors. In this review, we also provide definitions and details of the main concepts used in evolutionary fire ecology: postfire regeneration traits, postfire strategies, life cycle in relation to fire, fire regimes (Box 1), costs of resprouting (Box 2), postfire seeding mechanisms (Box 3), and the possible evolutionary transitions (Box 4).

 

Fig2_sm
Fig. 1 : Main factors affecting adult and offspring seedling survival (P and C, respectively), and thus the P/C ratio, in fire-prone ecosystems (from Pausas & Keeley 2014 [2]).

 

Fig3_sm

Fig. 2: The changes in the probability of resprouting along an adult-to-offspring survival (P/C) gradient are not linear but show two turning points related to the acquisition of key innovations: the capacity to store a fire-resistant seed bank (postfire seeding), and the loss of resprouting capacity. Changes in P/C ratio may be produced by different drivers (Fig. 1) which drove the rise of innovations during evolution, e.g., during the increasing aridity from the Tertiary to the Quaternary (from Pausas & Keeley 2014 [2]).

 

Refecences

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [doi | pdf | esa | jstor]

[2] Pausas J.G. & Keeley J.E. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65 [doi | wiley | pdf]

 

Ulex born to burn (II): genetic basis of plant flammability

January 25th, 2014 No comments

In an previous study we found that Ulex parviflorus (Fabaceae) populations that inhabit in recurrently burn areas (HiFi populations) were more flammable than populations of this species growing in old-fields where the recruitment was independent of fire (NoFi populations) [1,2, 3]. That is, HiFi plants ignited quicker, burn slower, released more heat and had higher bulk density than NoFi plants. Thus, it appeared that repeated fires selected for individuals with higher flammability, and thus driving trait divergence among populations living in different fire regimes. These results were based on the study of plant flammability (phenotypic variability) without knowing whether plant flammability was genetically controlled. In a recent study using the same individuals [4], we show that phenotypic variability in flammability was correlated to genetic variability (estimated using AFLP loci) [figure below]. This result provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire [5]. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems.

Ulex-flam-AFLP

Figure: Relationship between flammability and genotypic variability at individual level in Ulex parviflorus (red symbols: individuals in HiFi populations; green symbols: individuals in NoFi populations). Variations in flammability are described using the first axis of a Principal Component Analysis (PCA1) performed from different flammability traits, and genetic variability is described using the first axis of a Principal Coordinate Analysis (PCo1) from the set of AFPL loci that were significantly related to flammability. See details in [4].

References
[1] Ulex born to burn, jgpausas.blogs.uv.es, 9/Nov/2011

[2] Pausas J.G., Alessio G., Moreira B., Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193:18-23 [doi | wiley | pdf]

[3] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613.  [doi | wiley | pdf]

[4] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223 [doi | pdf | data:dryad]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | trends | pdf]

 

Physiological differences between resprouters and seeders

November 9th, 2013 No comments

The ability to resprout and to recruit after fire are two extremely important traits for the persistence in fire-prone ecosystems [1,2], and they define three life histories: obligate resprouters, obligate seeders (non-resprouters), and facultative seeders. After a fire, obligate seeders die and recruit profusely from the seeds stored in the seed bank [3-5]. In contrast, resprouters survive after fire and their above-ground tissues regenerate from protected (often below-ground) buds by using stored carbohydrates [6]. Facultative seeders not only recruit profusely after fire, but are also able to resprout. In fact, seeders and resprouters have different regeneration niches: seedling regeneration of obligate resprouters is not linked to fire, and they recruit during the inter-fire period under sheltered conditions (i.e., under vegetation cover), while seedling regeneration of seeders occurs in open postfire environments. Given the marked difference in water availability between microsites under vegetation and microsites open to the sun under Mediterranean conditions, seedlings of resprouters and seeders are subjected to different water-stress conditions, and thus they are expected to have different physiological attributes. Despite these differences, resprouters and seeders co-exist, are often well-mixed on local and landscape scales [7,8], and represent the two main types of post-fire regeneration strategies in Mediterranean ecosystems [2].

A recent study demonstrates marked differences in physiological attributes between seedlings of seeders and resprouters [9]: Seeders show a range of physiological traits that better deal with water-limited and highly variable conditions (e.g., higher resistance to xylem cavitation, earlier stomatal closure with drought, higher leaf dehydration tolerance), but they are also capable of taking full advantage of periods with high water availability (greater efficiency in conducting water through the xylem to to sustain high gas exchange rates when water is available). Conversely, resprouter species are adapted to more stable water availability conditions, favoured by their deeper root system, but they also display traits that help them resist water shortages during long summers.

Previous studies already showed marked differences between seeders and resprouters in a range of attributes: resprouters tend to exhibit a deeper root-system, while seedling root structure of seeders are more efficient in exploring the upper soil layer [10]. Leaves of seeders show higher water use efficiency (WUE) and higher leaf mass per area (LMA; i.e., higher sclerophylly, lower SLA) [11]. Seeds of seeder species are more tolerant to heat shocks and have greater heat-stimulated germination [3]. All these differences support the idea that they are distinct syndromes with different functioning characteristics at the whole plant level and suggest that they undertook different evolutionary pathways [12].

Figure: Coexistence of resprouters (R+) and seeders (R-) in postfire conditions near Valencia, Spain. (Foto: A. Vilagrosa).

 

References:

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [jstor |[pdf | Ecological Archives E085-029]

[2] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]

[3] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 - 552. [doi | pdf]

[4] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [doi | pdf | blog]

[5] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(12): e51523. [doi | plos | pdf | blog]

[6] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121: 1577-1584. [doi | pdf]

[7] Verdú M, & Pausas JG 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities Journal of Ecology 95 (6), 1316-323 [doi | pdf]

[8] Ojeda, F., Pausas, J.G., Verdú, M. 2010. Soil shapes community structure through fire. Oecologia 163:729-735. [doi | pdf | blog]

[9] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201 : xx-xx [doi | pdf | suppl.] - NEW

[10] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331. [doi | pdf | blog]

[11] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [doi | pdf | blog]

[12] Verdú M. & Pausas J.G. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. Evolution 67: 1756-1766. [doi | pdf | blog]

 

FireStats icon Powered by FireStats