Heritability of serotiny (2): a molecular approach
Not long ago we demonstrated that serotiny (i.e., the capacity to accumulate a seed bank in the canopy until the seeds are released by fire) is an heritable trait in pines [1]. This analysis was based on a classical provenance – progeny common garden experiment. However, trait variability under controlled environmental conditions may not fully reflect the variability observed in the field, and thus this estimate of heritability may not reflect how traits respond to natural selection. This is because there is higher environmental variability in the field and also because garden experiments typically include individuals that would not survive in the field (i.e., artificially increases progeny survival) [2]. With the aim of obtaining a more realistic estimate of heritability of serotiny, we have recently estimate it directly in the field for two pine species (P. halepensis, P. pinaster) [3]. Because in the field it is not possible to construct a pedigree, we used the relatedness among individuals estimated from molecular markers (SNPs) for the same individuals from which we had estimated serotiny previously [4]. The variance in serotiny was modelled incorporating the environmental variability (climate and fire regime) using a Bayesian ‘animal model’. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). The difference is not surprising because wild P. halepensis and P. pinaster populations extend over heterogeneous landscapes with large environmental variations. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire-related trait for evolutionary change in the wild [2].
Fig: Serotinous cones of P, halepensis and P. pinaster can be observed in previous posts (P, halepensis, P. pinaster). The photo here shows serotinous cones of Pinus patula from central Mexico (in a foggy rainy day).
References
[1] Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.C. & Pausas, J.G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany 114: 571-577. [doi | pdf | suppl. | blog]
[2] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20: 318-324. [doi | sciencedirect | cell | pdf]
[3] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Molecular Ecology 24: 5633–5642 [doi | pdf | suppl.]
[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356. [doi | amjbot | pdf | supp. | blog]