Home > Fire Ecology > Evolutionary Ecology of Fire

Evolutionary Ecology of Fire

November 4th, 2022 Leave a comment Go to comments

Fire is an evolutionary pressure that shaped our biodiversity [1,2]. In a recent paper we summarized the current state of the art in this topic [3]. Fire has been an ecosystem process since plants colonized land over 400 million years ago [1]. Many diverse traits provide a fitness benefit following fires, and these adaptive traits vary with the fire regime [4]. Some of these traits enhance fire survival, while others promote recruitment in the postfire environment. Demonstrating that these traits are fire adaptations is challenging, since many arose early in the paleontological record, although increasingly better fossil records and phylogenetic analysis (figure below) make timing of these trait origins to fire more certain. Resprouting from the base of stems is the most widely distributed fire-adaptive trait, and it is likely to have evolved under a diversity of disturbance types. The origins of other traits like epicormic resprouting [5], lignotubers [6], serotiny [7], thick bark [8], fire-stimulated germination [9], and postfire flowering are more tightly linked to fire. Fire-adaptive traits occur in many environments: boreal and temperate forests, Mediterranean-type climate (MTC) shrublands, savannas, and grasslands. MTC ecosystems are distinct in that many taxa in different regions have lost the resprouting ability and depend solely on postfire recruitment for postfire recovery [10]. Overall, evolutionary fire ecology not only provides an understanding of the origin and history of our biota, it also sets the basis for the management of our ecosystems in a world undergoing fire-regime changes.

Time of origin (x-axis) of five different fire traits (different colors) for different lineages (y-axis) estimated from dated phylogenies. Bars expand the uncertainty of the time of origin (e.g., stem versus crown age). From [3]

References

[1] Pausas JG & Keeley JE 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doiOUP | pdf | post]

[2] He T, Lamont NB, Pausas JG 2019. Fire as s key driver of Earth’s biodiversity. Biol. Rev. 94:1983-2010. [doi | pdf

[3] Keeley JE & Pausas JG 2022. Evolutionary ecology of fire. Ann. Rev. Ecol. Evol. Syst. 53: 203-225. [doi | pdf] <- New paper

[4] Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA 2011. Fire as an evolutionary pressure shaping plant traits. Trends Pl. Sci. 16: 406-411. [doi | sciencedirect | trends | pdf | For managers]

[5] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends Pl. Sci. 22: 1008-1015. [doi | sciencedirect | pdf] [post | Cover image]

[6] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phyt. 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[7] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Pl. Sci. 39:140-172. [doi | pdf | suppl.]

[8] Pausas JG 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.] & Pausas JG 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf]

[9] Pausas JG & Lamont BB 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97: 1612-1639. [doi | pdf | supp. mat.]

[10] Pausas JG & Keeley JE 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phyt. 204: 55-65. [doi | wiley | pdf]

  1. Botas de Mulher
    November 8th, 2022 at 14:13 | #1

    It is very important this article, the knowledge of plants that are resistant to fire and that prevent its spread. As well as their ability to self-regenerate.

  1. No trackbacks yet.


¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 13 6 ?