Archive

Archive for November, 2014

NASA and Fire ecology

November 28th, 2014 No comments

NASA has featured our paper on the global fire-productivity relationship [1] in NASA Sensing Our Planet 2014

strange-bedfellows

 

Refereces
[1] Pausas J.G. & Ribeiro E. 2013. The global fire-productivity relationship. Global Ecol. & Biogeogr. 22: 728-736  [doi | pdf | blog post]

[2] Vizcarra N. 2014. Strange bedfellows. NASA Sensing Our Planet 2014 [link | PDF]

Alternative fire-driven vegetation states

November 1st, 2014 No comments

One of the clearest pieces of evidence for the role of fire in shaping vegetation is the occurrence of alternative vegetation types maintained by different fire regimes in a given climate. The different flammability of alternative communities generates different fire feedback processes that maintain contrasted vegetation types with clear boundaries in a given environment; and fire exclusion blurs this structure. This has been well documented in tropical landscapes (e.g., [1]) that are often mosaics of two alternative stable states – savannas and forests – with distinct structures and functions and sharp boundaries. Currently, there is an increasing evidence that alternative fire-driven vegetation states do occur in other environments, including temperate forests ([2, 3] and figure below). That is, the existence of alternative fire-driven vegetation states may be more frequent than previously thought, although human activities may favour one of the states and mask the original bistability.

modelv2

Figure: Factors determining the transition between two alternative vegetation states (fire sensitive forest and fire resilient shrubland) in a temperate landscape in Patagonia. Human factors (global warming, increased ignitions, and livestock grazing) favour transition to shrublands. From [2].

References
[1] Dantas V., Batalha MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454-2463.  [doi | pdf | appendix]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. Journal of Vegetation Science 26: 4-6 [doi | pdf | suppl.]

[3] Paritsis J., Veblen T.T. & Holz A. 2014. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J. Veget. Sci., 26.