Archive

Archive for February, 2023

Seed dormancy: a glossary

February 1st, 2023 No comments

We have recently reviewed concepts related to seed dormancy and the mechanism of dormancy release (see references 1, 2, 3 below). Here we summarize the main definitions considered.

Seed dormancy: delayed germination even when conditions are favorable. It is a state of metabolic inactivity in the seed that prevents the embryo from growing and thus the seed from germinating. There are two major classes of seed dormancy, inherent dormancy and imposed dormancy.

  • Inherent (or innate) dormancy: dormancy is an internal response through retarded embryo maturity or metabolic inactivity. This is often called just ‘dormancy’; it has also been called primary dormancy, but this name is not appropriate (see Secondary dormancy below). There are three basic types of inherent dormancy, depending on the mechanism of release: morphological, physical and physiological dormancy. Some seeds may have multiple mechanisms where they combine physiological and either morphological or physical dormancy.
    • Physical dormancy (PY): a type of inherent dormancy where the seed coat is impermeable to water and/or oxygen such that metabolism cannot occur and the seed cannot germinate even if hydrothermal conditions are suitable. Physical dormancy is typically released by heat, or by physical or chemical scarification: 
        • Heat-released dormancy: seeds require a heat pulse for breaking physical dormancy that exceeds soil temperatures experienced during summer and is comparable with fire heat.
        • Scarification-released dormancy: seeds require a physical or chemical scarification (different from heat) for breaking physical dormancy (e.g., scratching the surface of the seed coat). Scarification may be a convenient tool for breaking dormancy in horticulture, but its ecological role in the soil is not well known; it may be related to seed coat decays over time through temperature fluctuations or microbial processes. Scarification-released dormancy also occurs in species that do not form a seed bank: seeds of fleshy-fruited species are typically dormant, and scarification (chemical or mechanical) through the guts of frugivorous vertebrates releases their dormancy; in that case, dormancy is a strategy for long distance dispersal [2].
    • Physiological dormancy (PD): a type of inherent dormancy in which metabolic requirements have yet to be met and germination cannot proceed even if hydrothermal conditions are suitable. Some examples of physiological dormancy are:
        • Smoke-released dormancy: a type of physiological dormancy that is maintained until chemical byproducts in smoke or ash from the combustion of plant matter (collectively termed ‘smoke’) breaks dormancy by catalysing production of enzymes required for initiating metabolic activity and germination.
        • Inhibitor-released dormancy: a type of physiological dormancy where chemical inhibitors must be removed to allow germination. It has been observed in some seeds that germinate only when removed from the fruit, or in mistletoes, when the mucilage is removed (by frugivorous birds). [3].
        • Cold-released dormancy: a type of physiological dormancy that is maintained until the seed is exposed to periods of cold (e.g., ~5°C for two months) that promotes production of cofactors required for initiating metabolic activity [3].
        • Light/dark-released dormancy: a type of physiological dormancy that is maintained until the seed is exposed to periods light-dark that promotes production of specific cofactors required for initiating metabolic activity (photoperiod-controlled dormancy or photodormancy).
    • Morphological dormancy (MD): Dormancy is maintained in an underdeveloped embryo which requires a period of post-dispersal maturation (after-ripening) before the seed is ready to germinate. Morphological dormancy due to immature embryos is neither environmentally controlled nor metabolically inactive and might be better considered as post-release embryo maturation and only apparently dormant (pseudodormancy) [3].
  • Imposed dormancy: environmentally-imposed dormancy is the state where metabolic activity continues to be suppressed as external conditions remain unsuitable for germination. Some times it is called secondary dormancy but this term is inappropriate because it may be the only form of dormancy among many seeds, so it cannot be considered secondary in a temporal sense nor minor in a functional sense [3]. In species with heat-released dormancy, this state is maintained between the fire event and the first substantial postfire rains but may be minimal among smoke-responsive seeds if the chemicals are only absorbed once the seeds have imbibed. [1,3]

Dormancy syndrome: A correlated suite of traits that is coordinated to maintain seed dormancy during storage, execute seed dormancy release in response to a specified stimulus, and respond quickly to favorable germination conditions when they become available [1]. In fire-prone ecosystems, we defined four dormancy syndromes: Heat-released dormancy, Smoke-released dormancy, Non-fire-released dormancy, Non-dormancy [1]. Fire-released dormancy is a concise term for heat-released and smoke-released dormancy syndromes [1]

Heat-stimulated germination: Heat per se does not stimulate germination but breaks dormancy that allows germination to proceed later, i.e. once suitable hydrothermal conditions are met. Thus, this term refers to the heat-released dormancy syndrome [1].

Secondary dormancy: under some conditions seeds may return to a dormant state following the introduction of earlier or new inhibitory conditions that re-impose seed dormancy. Dormancy cycling may occur when seeds that have previously broken inherent or imposed dormancy return several times to that state (secondary inherent or imposed dormancy) following conditions that annul the current dormancy-release state.

Smoke-stimulated germination: In physiologically dormant seeds, specific smoke chemicals break dormancy and allow germination to proceed. These chemicals may be absorbed by dry seeds but, once the wet season begins, they are more likely to be absorbed dissolved in the soil solution during imbibition so that germination proceeds without further delay. Thus, this term is equivalent to the smoke-released dormancy syndrome [1]. Smoke chemicals may also hasten the rate of germination of non-dormant seeds among some species.

Dormancy-released pathways:  There are at least three ways by which seeds release dormancy [3]:

  • Pathway 1 (inherent/imposed dormancy release pathway): First inherent dormancy is broken, but for germination to proceed, imposed dormancy must also be broken at some later stage, that is, when suitable hydrothermal conditions prevail. E.g., the heat of a fire may break (inherent) physical dormancy, but seeds will not germinate until the first significant rainfall events (breaking environmental imposed dormancy).
  • Pathway 2 (imposed dormancy release pathway): seeds that lack inherent dormancy (non-dormant) may still encounter an environment that does not meet their germination requirements, so that they remain under imposed dormancy until the appropriate hydrothermal conditions are met.
  • Pathway 3 (imposed/inherent dormancy release pathway): first imposed dormancy is broken before inherent (physiological) dormancy release is possible. Some seeds must already be imbibed before the inherent physiological dormancy is released, e.g, before the seed is receptive to light/dark or to cold that breaks inherent dormancy (light/dark-dormancy release or cold-dormancy release).

Bet-hedging vs best-bet strategies: In unpredictable arid ecosystems, seed dormancy is a bet-hedging strategy, as it favours spreading the risk of recruitment failure over many years. In seasonal environments where fires are predictable, seed dormancy is a best-bet strategy as seed dormancy maximizes germination in a single year when conditions are optimal, following the first substantial rains after fire [2] (this best-bet strategy is also termed environmental matching [1]). Serotiny (seeds stored in the canopy seed bank with delayed seed release and dispersal [link]) is usually not considered within the concept of dormancy, but it certainly fits the best-bet strategy [2].

References

[1] Pausas JG. & Lamont BB. 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97: 1612-1639. [doi | pdf | supp. mat. | data (figshare)] (highlighted in plant.org)

[2] Pausas JG, Lamont BB, Keeley JE., Bond, WJ. 2022. Bet-hedging and best-bet strategies shape seed dormancy. New Phytol. 236: 1232-1236. [doi | wiley | pdf]

[3] Lamont BB & Pausas JG 2023. Seed dormancy revisited: dormancy-release pathways and environmental interactions. Funct. Ecol. [doi | pdf | data: dryad | plain language summary]