Archive for September, 2021

Reconciling Gleason’s and Clements’ views

September 30th, 2021 No comments

The question of whether species are organised as collectives of integrated interacting assemblages (Clements’ community concept) or behave individualistically (Gleason’s community concept) is a century-old debate in ecology that is still unresolved. In a recent article, we are reconciling the two approaches [1].

The Gleasonian view suggests that communities are assembled by species that respond individualistically along environmental gradients and thus cannot form bounded units (Fig. 1A). However, in many world landscapes, for a given climate, strikingly different biomes with sharp boundaries co-occur forming landscape mosaics. These mosaics are typically formed by a closed biome (forests) and open (non-forest) biome (e.g., grassland, savanna, shrublands). These two alternative biome states (ABSs [2]) are maintained by different feedback processes and have radically different species with contrasting shade and disturbance tolerance traits [2].

Under the individualistic view of species along climatic gradients, the overlapping response curve along a climate gradient (Fig. 1A) may indicate plant coexistence (and potentially competitive interactions); however this is true only if they occur in the same biome (Fig. 1B). That is both Gleason’s individualistic view (within biome) and Clements’s organismic view (across biomes) are complementary; both perspective of community remain useful in ecology.

The consequence is that fitting species distribution models or using climate limits in modelling for projecting future species distributions are inappropriate for extensive regions with alternative biome states. One way to improve these predictions would be to consider the presence or absence of forest shade in the modelling [1].

Figure 1. Classical (Gleasonian) pattern of species response curves along a climate gradient (A), and the alternative pattern along the same climatic gradient when there are ABSs (B). Note that in the driest and the wettest section of the gradient, we find open (e.g., grassland) and closed (forest) biomes, respectively; but at intermediate levels of the gradient, both are possible depending mainly on the disturbance regimes and feedback processes [2). Thus, under the intermediate levels of the gradient, species that may seem to coexist when considering climate only (A) are not really coexisting but occurring in drastically different biomes (B). From [1].


[1] Pausas J.G. & Bond W.J. (in press). Alternative biome states challenge the modelling of species’ niche shifts under climate change. J. Ecol. [doi | pdf]

[2] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Pl. Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]