Pinus yunnanesis

January 16th, 2021 No comments

In the Yunnan Province of China, P. yunnanensis occurs in two growth forms: as a tree (var. yunnanensis) and as a shrub (var. pygmea) [1]. The shrubby form occurs mainly in upper slopes and ridges (Fig. 1), where soils are poor and dry, and fires are likely. This shrubby pine is very interesting and quite unique among pines: it has serotinous cones (Fig. 2), and resprouts after fire from basal buds (Fig. 3), generating multi-stemmed shrubby pine populations [1]. Serotiny is common among pines [2] while resprouting is not [3], so pines with both serotiny and resprouting are rare; and having a multi-stemmed growth form is even rarer.

Fig. 1. Pine shrubland (Pinus yunnanensis var. pygmea) in Yunnan, China. Photo C. Luo [1]
Fig. 2. Pinus yunnanensis var. pygmea showing serotinous cones, Yunnan, China. Photo: W.-H. Su [1]
Fig. 3. Pinus yunnanensis var. pygmea resprouting from basal buds after a fire, Yunnan, China. Photo: JG Pausas [1]


[1] Pausas JG, Su W-H, Luo C, & Shen Z. 2021. A shrubby resprouting pine with serotinous cones endemic to Southwest China. Ecology [doi | pdf]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Pl. Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

Wildfires in art: paintings II

December 31st, 2020 1 comment

I’m compiling paintings about wildfires and burned landscapes. Here some examples (click the picture to enlarge it). More examples are welcome! (email), thanks!

The painters

George Catlin (1796–1872, USA)
Fred Williams (1927–1982, Australia)
Cota Marqués (Spain): painted during the lockdown  2020
Philip Juras (Southeast USA)
Donald Ramsay (Australia)
Josep Serra Tarragón (Spain)

More at: Wildfires in art: paintings I

Fire and biodiversity in the Anthropocene

November 20th, 2020 No comments

Conservation of Earth’s biological diversity will be achieved only by recognition of the critical role of fire in shaping ecosystems.


Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF, Buckland ST, Canelles Q, Clarke MF, Fortin M-J, Hermoso V, Herrando S, Keane RE, Lake FK, McCarthy MA, Ordóñez AM, Parr CL, Pausas JG, Penman TD, Regos A, Rumpff L, Santos JL, Smith AL, Syphard AD, Tingley MW, Brotons L. 2020. Fire and biodiversity in the Anthropocene. Science 370 (6519): eabb0355. [doi | science | pdf | suppl.]

Pine serotiny

November 14th, 2020 No comments

Some days ago I asked this question on Twitter.

What is the difference between the top and bottom pine cones in this photo? This is a question I often ask to my new students in the first field trip; in this case, Beniardà fire, 2020 [link]

These cones are from Pinus halepensis and were collected after a wildfire in Beniardà (Alicante, E Spain; burned in Aug 2020).

Many of you reply correctly; here is the full answer:

Top cones: before the fire, they were open on on the tree, i.e., without seeds. Fire burn them, and so they are all black

Bottom cones (see also the picture below): before the fire they were closed (serotinous cones), and fire opened them facilitating seed dispersal. Note that they are unburned inside. These cones contribute to the postfire regeneration of the pine.

Serotinous cones in Pinus halepensis: before (left) and after a fire (right)



  • Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Reviews Plant Sci 39:140-172. [doi | pdf | suppl.]
  • Pausas JG. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci 20: 318-324. [doi | sciencedirect | cell | pdf]
  • Castellanos MC, González-Martínez S. & Pausas JG. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol Ecol 24: 5633-5642. [doi | pdf | suppl.]
  • Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG. 2013. Fire structures pine serotiny at different scales. Am J Bot 100: 2349-2356. [doi | amjbot | pdf | supp.]
  • Hernández-Serrano A, Verdú M, Santos-Del-Blanco L, Climent J, González-Martínez SC & Pausas JG. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Ann Bot 114: 571-577. [doi | pdf | suppl.]


More on serotiny: Serotiny: a review | Pinus brutia | Heritability of serotiny | Heritability of serotiny (2) | Evolutionary fire ecology in plants | Serotiny |

Cork oaks in Murcia

November 1st, 2020 No comments

Cork oak (Quercus suber) typically grows in relatively wet mediterranean environments [1]. However there are some cork oaks in arid climate; perhaps the population in the driest site is the small and isolated cork oak patch in Rambla de Talón (ca. 100 m asl, Ribera de Molina, Molina de Segura, Murcia, Spain; Fig. 1). It includes less than 100 individuals scattered in an area of sandy conglomerates (Fig. 3); the average rainfall is less than 300 mm. They are believed to have been planted in the past (when?), but their persistence in such arid conditions gives them a high added value. This population is much smaller and is located in a much drier conditions than the one in Pinet (Valencia) we mentioned some time ago [2,3].

Figure 1. Distribution of Cork oak (Quercus suber) in the Iberian Peninsula. Light grey is the species distribution; dark grey is the data from forest inventories; crosses are small isolated populations. In red is the population of Murcia. Map from [1].

Precipitation during the last spring was above average, and currently (end of October 2020) most oaks in Rambla de Talón look healthy and have some acorns. Of the 26 tree we look at, the number of acorns ranged from 0 (7 trees) to more than 400 acorns (2 trees), but most trees have less than 10 acorns (Fig. 2; median= 5 acorns). In addition, there is no evidence of recruitment from previous years. That is, if persistence of this population is desired, it would require some help for their regeneration. Given that they produce some acorns, restoration actions using local acorns is possible.

Fig. 2 Acorn production (October 2020) in 26 cork oak trees from Rambla de Talón, Ribera de Molina, Murcia.

[1] Aronson J, Pereira JS, Pausas JG (eds). 2009. Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration. Island Press, Washington DC. 315 pp. [The book]

[2] Pausas JG, Ribeiro E, Dias SG, Pons J & Beseler C. 2006. Regeneration of a marginal Cork oak (Quercus suber) forest in the eastern Iberian Peninsula. J. Veget. Sci. 17: 729-738. [pdf | doi | wiley ]

[3] El surar de Pinet – a small isolated population of cork oak.

Hummingbirds and wildfires

October 6th, 2020 No comments

Hummingbirds are among the most iconic birds of America, especially abundant in the tropics. They are very important pollinators (nectar feeders), thus their abundance and distribution are likely to affect hummingbird-pollinated plants, many of which are endemic or endangered. A recent review in western United States [1] suggests that most hummingbird species respond positively to wild or prescribed fire and thus, for the conservation of these emblematic birds, it is important to promote landscape mosaics, with early and mid postfire successional habitats, together with forest patches.

Here is a video by Contreras-Martínez et al. on hummingbirds and wildfires in Sierra de Manantlán Biosphere Reserve, Mexico [2]. The video is in Spanish; hummingbirds are ‘colibríes’ or ‘picaflores’

Grandes Guerreros: Colibríes y Fuego

Créditos del vídeo:
Filmación y Edición: Carlos Armando Pacheco Contreras (Vidacinema)
Productor: Sarahy Contreras Martínez
Guión: Sarahy Contreras Martínez, Carlos Armando Pacheco Contreras & Oscar Cárdenas Hernández
Narración: Cesar Híjar Tejada
Investigación Científica: Sarahy Contreras Martínez (Colibríes) & Enrique Jardel Peláez (Fuego)
Música Original: Erick Ríos Vázquez
Mezcla de audio: Sognare Estudios
Also available at:

[1] Alexander JD, Williams EJ, Gillespie CR, Contreras-Martínez S & Finch DM. 2020. Effects of restoration and fire on habitats and populations of western hummingbirds: A literature review. Gen. Tech. Rep. RMRS-GTR-408. Fort Collins, CO, USDA,

[2] Pausas JG 2016. Flammable Mexico. Internat. J. Wildland Fire 25: 711-713. [doi | pdf ]

[3] Other related videos: Burning for biodiversity | Fire & the Florida scrub | La huella del fuegoFish & fire

[4] Other post on fire & fauna | fire & pollination | fire & Mexico |

Pyrocumulonimbus and firestorms

September 30th, 2020 No comments

Meteorologists call Cumulus (Cu) to cotton-like clouds, and Cumulonimbus (Cb) to denser and bigger clouds carried by powerful upward air currents. When these clouds are originated by a fire (or a volcano), we call them pyrocumulus (PyroCu) and pyrocumulonimbus (PyroCb) clouds.

Pyrocumuloninbus (= Cumulonimbus flammagenitus) are dense towering vertical clouds carried by powerful upward air currents generated by the heat of a wildfire [1]. These fires are also called plume-dominated fires, super-heated wildfires, or wildfire-driven thunderstorms. The origin is typically tied to very high and continuous fuel loads and extreme fire weather that produces great heat and strong convection currents. In most cases, they remain in the troposphere, but when the heat produced by the fire is very high, they can cross the tropopause and inject a large amount of smoke into the stratosphere; in those cases, wildfires contribute to the global carbon and nutrients redistribution [2]. These plumes often collapse when temperatures drop with altitude and create extreme winds. That is, these high intensity fires generate feedback processes between the atmosphere and the fire that produce strong surface winds, tornadoes, and even pyrogenic lightning ignitions that further expand the fire (firestorms).

Firestorms are wildfires with extreme, sometimes erratic behavior, typically beyond the capability of fire services to contain; the term has been used to describe very different fire types such as wind-driven fires (e.g., Santa Ana wind firestorms in California) and pyrocumulonimbus plume fires [1].

Examples of pyrocumulonimbus clouds (click in the picture for enlarge it).

A: Benaixama fire, Alicante (Spain), 7/2019, by Servicio de Vigilancia de Prevención de Incendios Forestales, Observatori Caperutxo, Generalitat Valenciana.
B: Llutxent, Valencia (Spain), 8/2018, by Empar.
C: Tasmania (Australia), 2013, by Janice James.
D: Creek fire, California (US), 9/2020, by Thalia Dockery.
E: La Pampa (Argentina), 1/2018, Earth Observatory, NASA.
F: Funny river, Alaska (US), 5/2014, Earth Observatory, NASA.


[1] Pausas J.G. & Keeley J.E. (in press). Wildfires and global change. Front. Ecol. Environ.

[2] Pausas J.G. & Bond W.J. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35: 767-775. [doi | sciencedirect | pdf]

Mythbusting Forests

July 23rd, 2020 2 comments

Despite the multiple evidence that afforestation is not a solution for mitigating the increased atmospheric CO2 [1], there are still lobbies and multimillionaire clubs willing to plant millions of trees at the global scale, and spreading myths about the benefits of trees and large afforestation programs. Recently (17 July 2020), William Bond gave a talk at Oxford University to bust these myths. Here is his talk, and below is a summary of the top 5 myths.

Myth 1. Forest are ancient, non-forests are caused by deforestation. There is evidence of ancient species-rich grasslands and shrublands in many parts of the world (from Cerrado in Brazil, to grasslands in Africa, shrublands in Mediterranea ecosystems, etc.). In fact animal grazers evolved long ago (long before humans could deforest) in grasslands. There are also evidences of many tropical forests that were thought to be ancient and are not (e.g., youtube). This myth has deep roots in the western culture [2].

Myth 2. Oxygen comes from trees: cutting down forest will deprive us of air to breath. Oxygen is more ancient than forests! The atmospheric concentration of oxygen during much of the evolutionary history of plants, before the rise of dense tropical forests, has been higher than current level (21%). Fire requires oxygen to burn, and there has been fire since early colonization of land plants [3]. Statements like the Amazon provides 20% of our oxygen are wrong; the Amazon consume about as much O2 as it produces; O2 is ancient, it doesn’t depend on trees (see details: link1 & link2). There are lots of reasons to preserve the Amazon, but running out of oxygen isn’t one of them.

Myth 3. Forests ‘make rain’: plant trees to get more water. W. Bond note that many city dwellers and some climatologists suggest that planting trees would increase water supply, but farmers, which have daily experience with land management, says that planting trees dries up rivers. A catchment experiment in South Africa unambiguously show that catchments with tree plantations get drier compared with those under natural shrublands (Wyk 1987). Maybe some catchments, given their size, climate and topography, may generate their own rainfall (as often suggested for the Amazon), but this doesn’t seems a general rule. Planting trees will not ‘make rain’, most likely will dry out the watershed (e.g., Wang et al. 2020).

Myth 4. The biggest store of terrestrial carbon is in tropical forests. Tropical forests store about 225 Pg C, while boreal soils store ca. 1300 Pg C. So, from the C perspective, it is more important to conserve boreal soils (peatlands, etc.) than tropical forests! Obviously tropical forest need to be conserved for their biodiversiy. But you better forget about planting trees, and start thinking in conserving boreal peatlands as their destruction would release high amount of CO2 to the atmosphere. See also: Friggens et al. 2020.

Myth 5. Forests equate with biodiversity. Many tropical forests are highly diverse, but there are examples where planting trees implies a loss of biodiversity (Abreu et al. 2017, Phifer et al. 2017). When comparing savannas and forest for the same rainfall, there are no differences in biodiversity (Murphy et al. 2016). In addition, many of the global biodiversity hotspots are open non-forest ecosystems or mosaics of forest and open ecosystems. So the myth cannot be hold. In fact, landscape mosaics of forest and non-forest are highly diverse landscapes [4].


[1] Afforestation is not the solution to mitigate CO2,

[2] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

[3] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | OUP | pdf | post]

[4] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]  

Update: a new paper that addresses this topic:
Fleischman et al. 2020. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience, doi: 10.1093/biosci/biaa094

Serotiny: a review

June 9th, 2020 No comments

Here is a new review paper on serotiny in plants [1]. Serotiny refers to prolonged storage of seeds in woody structures (cones or fruits) on the mother plant for several growing seasons. This implies an accumulation of a canopy seed bank with seeds from different. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat of the fires opens the woody structures and thus seeds are dispersed in the post-fire bed (where resource are abundant and competition is low). There are other ways by which some cone/fruit can be opened (e.g., dry warm winds), but the number of seeds released and the chance of successful recruitment are much lower than in postfire conditions, and thus fire provides higher fitness benefits for serotinous plants than any other cue factor. This is why most serotinous plants occurs in ecosystems with frequent crown fires. Serotiny has been studied mainly in pines [2-4] and Proteaceae, but we know at least 12 families and more than 50 genera with serotinous species [1]. And there is a diversity of serotinous structures (cones and fruits) in different genera and families (Fig. 1).

Figure 1. A) Callitris (Actinostrobus) pyramidalis (Cupressaceae); B) Postfire Cupressus sempervirens (Cupressaceae); C) Cone of Pinus patula; D) Postfire cones of Pinus radiata; E) Folicles of Hakea cyclocarpa (Proteaceae); F) Hakea stenocarpa follicle; G) Follicles of H. platysperma; H) Xylomelum angustifolium (Proteaceae) follicle; I) Lambertia echinata (Proteaceae) follicle; J) Cone of Banksia lemanniana (Proteaceae); K) B. hookeriana burning; L) Postfire B. leptophylla cone; M) Cluster of capsules of Leptospermum spinescens (Myrtaceae), inset: seeds of Callistemon (Melaleuca) teretifolius; N) Elongated cluster of sessile capsules of Callistemon citrinus (Myrtaceae), + seeds of Callistemon (Melaleuca) teretifolius; O) Woody capsules of Eucalyptus todtiana (Myrtaceae), Inset: capsules of Angophora hispida (Myrtaceae); P) Spikes of Connomois parviflora (Restionaceae); Q) Protea burchellii (Proteaceae); R) fruits of Protea burchellii; S) Cone of Allocasuarina torulosus (Casuarinaceae); T) Cone of Isopogon trilobus (Proteaceae); U) Cones of Petrophile brevifolia; V) Seedlings from serotinous H. polyanthema, B. attenuata and B. hookeriana in litter microsite. For more details see [1].


[1] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Rev. Plant Sci. [doi | pdf]

[2] Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[3] Hernández-Serrano A, Verdú M, Santos-Del-Blanco L, Climent J, González-Martínez SC, Pausas JG. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Ann. Bot. 114: 571-577. [doi | pdf | suppl.]

[4] Castellanos MC, González-Martínez S, Pausas JG. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  


More on serotiny: Serotiny | Heritability of serotiny (1) | Heritability of serotiny (2): a molecular approach | Evolutionay fire ecology in pines 

Microbes, herbivores, and wildfires

May 4th, 2020 No comments

Plants are the largest biomass component of most terrestrial ecosystems, and litter decomposition is considered the dominant process by which nutrients return to plants. In a recent paper [1] we show that in terrestrial ecosystems, there are three major pathways by which plant biomass is degraded into forms that release nutrients again available to plants: microbial decomposition; vertebrate herbivory; and wildfires. These processes act at different spatial and temporal scales, have different niches, and generates different ecological and evolutionary feedbacks. The three processes can occur in a given ecosystem (competing for the same resource, biomass), but the relative importance of each varies with the micro- and macro-environmental conditions (see Figure below).

Wildfires and herbivory are two powerful biomass consumers; they generate feedback processes that maintain vegetation at states of lower biomass than would be expected from the physical environmental conditions (alternative vegetation states [2]). In addition, wildfires and herbivory also select for light-loving species with a set of adaptive traits to persist under these consumers [3,4]. That is, both herbivory and fire can influence the mix and attributes of plant species, while the mix and attributes of plants also influence the fire and grazing regimes. These ecological and evolutionary feedbacks make fire and herbivory distinct from other abiotic disturbances such as cyclones, landslides, avalanches, volcanoes, or floods, where plants may respond – but the disturbance will not change in response to these plant responses. That is, wildfires, herbivory, and microbial decomposition can be viewed as biotic processes that structure our ecosystems and the biosphere, at different temporal and spatial scales.

This holistic view in which microbes, herbivores, and wildfires play a joint role in the functioning of ecosystems contributes to a better understanding of the diversity of mechanisms regulating the biosphere.

Figure: Plant biomass and vegetation structure in terrestrial ecosystems are determined by three feedback processes: vertebrate herbivory (H), microbial decomposition (D), and wildfires (W). These three processes also interact with each other (e.g., competition for biomass; but positive interactions also exist). Relative importance of each of the three ecosystem pathways varies in the environmental space (niche), here defined by the water availability and soil fertility. Illustration by Dharmaberen Studio. From [1].


[1] Pausas J.G. & Bond W.J. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. & Evol. [doi | pdf]

[2] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[3] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]  

[4] Bond, W. J. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford University Press.


Megafauna history shapes plants

April 24th, 2020 No comments

The role of large herbivores in explaining broad-scale ecological pattern has probably been underestimated [1]. For instance, they are important in maintaining many landscapes and biomes across the world [2]. In a recent paper we show that the different history of megafauna abundance and extinctions in different continents has shaped the dominance of many plant traits [3]. Tropical Africa (paelotropics) and tropical South America (neotropics) are a clear example of contrasting megafauna history under similar environmental conditions. By comparing plant traits of woody species in different biomes (savannas and forests) and for the two different continents, we found that continent explain better the differences in plant traits than biome, climate, or soil, and that the differences between continents are consistent with the higher impact of large vertebrates in Africa than in South America. For instance, plants in African savannas tend to be more thorny and to have higher wood density, i.e., traits related to defense against megaherbivores. In contrast, South American savannas (Cerrado) harbor more species with underground bud banks (geoxyles [4]), and thicker protective barks, i.e., traits related to protect from wildfires [4,5].

Megafauna was certainly present in South America before the Holocene overkilling by humans, however, it is unlikely they live in the brazilian savannas (cerrado); their weak and vulnerable stems (low height growth, low wood density, and lack of spines), are unlikely to have evolved in regions with abundant browsers. We hypotheses that megafauna in South America was distributed in: 1) an open version of the current seasonally dry tropical forests (SDTF, e.g., Chaco) as the proportion of thorny species is similar to African savannas (and much higher than the cerrado); and 2) the subtropical grasslands, as they currently need to be maintained by humans due to the missing megaherbivores (landscape anachronism [1]).

Overall our results suggest that variation in plant traits in the tropics is unlikely to be fully understood without considering historical factors, especially the direct and indirect impacts of megafauna. Looking at plants and thinking on their megafauna history may provide novel insights for understanding vegetation patterns across the globe [1].

The effects of megafauna history (left: absence, right: present of megafauna) on plant functional traits of tropical woody species in different biomes (savannas and forests). Arrows between the dominant driver(s) (boxes) and traits (circles) indicate positive (blue) and negative (red) effects. From [3]


[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]

[2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[3] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad]

[4] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[5] Pausas JG. 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf]  &  Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.]

Torre de l’Espanyol postfire

March 16th, 2020 No comments

On June 26, 2019 a wildfire started in Torre de l’Espanyol (Ribera de l’Ebre, Tarragona, Catalonia, Spain) and burned ca. 5000 ha. I recently visited the area (8.5 months postfire); the regeneration was still relatively low, as the winter has been quite dry, but many species were resprouting and some seedlings were starting to emerge. Here are some of the plants that were flowering: Platycapnos (Fumaria) cf. spicata, Muscari neglectum ssp. atlanticum, Fritillaria lusitanica (=F. boissieri, F. pyrenaica ssp. hispanica), Ophrys lupercalis (=O. forestieri; O. bilunulata was also flowering but not pictured below).


More on postfire flowering:

Paleofuegos: del Silúrico a la actualidad

February 18th, 2020 1 comment

En los últimos años hemos aprendido mucho sobre ecología y evolución de las plantas en relación a los incendios forestales [1]. Una de los puntos clave pare ello fue encontrar evidencias de que siembre, a lo largo de toda la historia evolutiva de las plantas, han habido incendios, incluyendo en las primeras comunidades vegetales que colonizaron el medio terrestre [2]. Y todo esto se sabe gracias a los avances en el estudio de los carbones fósiles. Uno de los estudiosos más importantes en paleo-fuegos es el geólogo Andrew Scott, quien ha dedicado gran parte de su vida a mirar carbones fósiles, y que en 2018 resumió sus investigaciones en un libro titulado Burning Planet: The story of fire through time [3]. Ahora tenemos la suerte de que ese libro se ha traducido al castellano, Planeta en llamas: la historia del fuego a través del tiempo (Galaxia Gutenberg, 2020). Creo que este libro es un buen complemento a mi libro sobre la ecología de los incendios forestales [4], y espero que ayude a la comunidad hispánica a entender mejor el papel ecológico, evolutivo, y ancestral que tiene el fuego en nuestros ecosistemas.


[1] Ecology & Evolution in fire-prone ecosystems [enlace]

[2] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | OUP | post | pdf]

[3] Scott A. 2018. Burning Planet: The story of fire through time. Oxford University Press. [versión española: Planeta en llamas: la historia del fuego a través del tiempo. Galaxia Gutenberg, 2020]

[4] Incendios forestales, una visión desde la ecología, CSIC-Catarata, 2012 [enlace]

Australian fires 2019/20

January 12th, 2020 No comments

Australia is a very flammable continent, and fires have been occurring there for millions of years. As a consequence, many plants and animals have developed adaptations and strategies to cope with recurrent fires. However, the current fire season in eastern Australia is really very severe, including not only very large fires but also high intensity firestorms. SE Australia has suffered other sever fire seasons in the past (an iconic example is the Black Friday bushfires in 1939). Why is this happening now? Here I’ve compiled key figures that help us to understand it.

In the last few years, Australia has been suffering an increase in temperature; on average, each year is hotter than the previous year (Fig. 1). In fact, 2019 was the warmest years, but also the driest year (with the lowest rainfall) ever recorded. December 2019, when most fires started, was climatically an extreme (Fig. 2). During the December heatwave (Fig. 3) some meteorological station (e.g., Penrith, near Sydney) recorded temperatures over 48oC, and the record of highest average maximum temperature for Australia was broken on two consecutive days (40.7 and 41.9oC  on 17 and 18 Dec, respectively). January 4 was Canberra’s hottest day since records began (44oC). In such extreme weather conditions, ignitions easily become a wildfire (in fact, several of the wildfires started from a dry lightning), and fires spread very quickly in a vegetation that has been in a drought for many months. This generates not only huge areas burned (Fig. 4), but also very hot fires and strong uplift air columns that reach the stratosphere (pyrocumulonimbus). These are called firestorms. Firestorms produce there own winds and spread embers and the fire very fast; they even produce lightnings that generate additional wildfires. Firestorms produce extreme fire behaviour that is beyond the capacity of firefighters. In those fires, as it happens in volcanoes, the smoke reaches the stratosphere and circulates at very long distances (e.g., currently smoke from these fires has already reached South America).

The fire season has not ended yet. The ecological effects of these fires will depend on many factors (spatial variability of fire intensity, previous fires, species, etc…). The size and intensity of these fires suggest that they can have some negative consequences, but it is too early for any quantitative evaluation. Many plants are starting to resprout just few days after the fire, even under those drought conditions; some animals are leaving their hiding places, exploring the burned area, and carcasses are locally abundant suggesting patches of high animal mortality. We’ll see when will the rain come, and how plants and animals will respond. For humans, the consequences are catastrophic (fatalities, destruction of many infrastructures, smoke problems, etc.).

Fig. 1. In Australia, each year is hotter than the previous year, on average. From Australian Bureau of Meteorology
Fig. 2. December 2019 was climatically an extreme, unprecedented in relation to rainfall and temperature. Elaborated with data from Australian Bureau of Meteorology
Fig. 3. Global temperature in December 18th, 2019, as shown by Windy. Note also that part of the differences in temperature are due to the different time zones; i.e., middle of the day in Australia, night time in South America, and early morning in Africa.
Fig. 4. Major fires in south-east Australia by January 10th, 2020 (5,634,000 ha). From @eforestal [update Jan 18th: 6 millions ha]

More information:

Australian Bureau of Meteorology  | @eforestal maphub  | NSW fire service | VIC emergency | Desinformation |

Update (4/2020): For a map of the time-since-fire and fire severity across NSW fires, see: Bradstock et al. 2020, Global Change Biol., doi:10.1111/gcb.15111 (spoiler: most fires burned at relatively low severity!)

Alternative Biome States

January 8th, 2020 No comments

There is growing interest in the application of alternative stable state (ASS) theory to explain major vegetation patterns in tropical ecosystems [1] and beyond [2]. In a recent paper [3] we introduced the theory as applied to the puzzle of non-forested (open) biomes growing in climates that are warm and wet enough to support forests (alternative biome states, ABSs; Fig. 1). Long thought to be the product of deforestation, diverse lines of evidence indicate that many open ecosystems are ancient. They have also been characterized as ‘early successional’ even where they persist for millennia. ABS is an alternative framework to that of climate determinism and succession (Table 1 below) for exploring forest/nonforest mosaics. Within climatic and edaphic constraints, consumers (fire and herbivores) can produce vastly different ecosystems from the climate potential and have done so for millions of years [4]. This framework explains not only tropical forest–savanna landscapes, but also other landscape mosaics across the globe (Fig. 2).

Fig. 1. Generalized feedback processes in fire-prone landscapes where open and closed biomes (e.g., a grassland and forest) are alternative stable states maintained by stabilizing feedbacks, while perturbations generate abrupt transitions among states (destabilizing factors). From: [3].

Fig. 2. Examples of multibiome landscape mosaics where closed forests alternate with open biomes (grasslands) that are maintained by mammal herbivory and fire. From: [3].

Table 1. Comparison of the three main dynamic processes assembling disturbance-prone communities and landscapes: classical (facilitation) succession, autosuccession, and ABS. From: [3].


[1] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecol. Lett. 19: 12-19. [doi | wiley | pdf | suppl.]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[3] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. [doi | sciencedirect| pdf]

[4] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

Diversidad política (4)

January 7th, 2020 No comments

España es un país muy diverso, con una gran variedad de climas, paisajes, comidas, bailes, lenguas, hablas, etc.; una diversidad generada por su peculiar situación geográfica, su heterogeneidad topográfica y la variedad de acontecimientos ocurridos a lo largo de su historia. Esto ha conferido a la población una elevada diversidad cultural, de ideas y puntos de vista. Sólo un gobierno plural y diverso, capaz de aceptar las diferencias, podrá gestionar correctamente y preservar la diversidad de este país. El bipartidismo difícilmente puede representar la diversidad española.

En la figura (abajo) vemos la evolución de la diversidad política en España, calculado a partir la distribución de los escaños de los diferentes partidos (en azul), para todas las Elecciones Generales al Congreso realizadas durante la democracia. El 15M (mayo 2011) sirvió para revitalizar la diversidad política del Congreso, tras muchos años de decaimiento (ver figura, en azul).

Tras las últimas elecciones generales en noviembre de 2019, en España tenemos un Congreso con la mayor diversidad de ideas políticas de la historia de la democracia (ver figura, linea azul); y esperamos que sea capaz de gestionar bien la diversidad del país. La diversidad del Congreso es prácticamente la misma que después de las elecciones de abril de 2019 (como era esperable), y sin embargo, ese Congreso fue incapaz de gestionar esa diversidad, seguramente por la falta de experiencia democrática, es decir, falta de capacidad de diálogo, de capacidad para aceptar las diferentes opiniones, y de excesivo deseo de poder de los lideres. Esperemos que el nuevo Congreso, y el nuevo gobierno que ahora empieza, hayan aprendido la lección.

Cabe señalar que la diversidad de opciones políticas de los votantes españoles, calculadas a partir de los votos y las abstenciones (linea roja de la figura) es más elevada que la diversidad política que se refleja en el Congreso (escaños; linea azul). El sistema electoral español hace que se pierda un parte nada desdeñable de la diversidad política de los ciudadanos. Con la llegada del 15M se ha visto reducida esa pérdida de diversidad (la linea azul se acerca más a la roja). Aproximadamente el 30% de los censados decidieron no contribuir a confeccionar la composición del Congreso (abstenciones, votos en blanco, votos nulos), y por lo tanto, contribuyen a esa pérdida de diversidad en el Congreso. La figura también refleja que pequeños cambios de opinión en los votantes a lo largo del tiempo (linea roja) se reflejan de manera amplificada en el Congreso (linea azul).

Figura: Valores de diversidad política (expresada con el índice de diversidad de Shannon-Weaver) calculado a partir de las opciones de los votantes (incluye votos a partidos, blancos, nulos y abstención; en rojo) y calculado según la distribución de los escaños resultantes (azul), para cada una de las Elecciones Generales al Congreso (España) realizadas durante la democracia (elaborado a partir de la base histórica de resultados electorales del Ministerio del Interior).

Entradas relacionadas

Diversidad política (3):
Diversidad política (2):
Pérdida de diversidad política en España: 
Carta a los no votantes: votar suma la abstención resta:

Nota aclaratoria: en las entradas previas sobre diversidad política en este blog, la diversidad política de los votantes (linea en rojo) se calculaba en base a la distribución de los votos a los distintos partidos. En esta entrada, y par reflejar un poco mejor la diversidad de las personas con derecho a voto, se ha calculado no sólo en base a los votos a los partidos, sino también incluyendo los votos en blanco, los nulos y las abstenciones.

Wildfires in art: paintings

December 22nd, 2019 1 comment

I’m compiling paintings about wildfires and burned landscapes. Here some examples (click the picture to enlarge it). I would appreciate additional examples (email), thanks!

The painters

George Catlin (1796–1872, USA)
Eugene von Guerard (1811–1901, Austria, Australia)
Vasily Polenov (1844–1927, Russia)
Tom J. Thomson (1877–1917, Canada)
Charles E. Burchfield (1893–1967, USA)
Fred Williams (1927–1982, Australia)
Rick Amor (1948-, Australia)
Donald Ramsay (Australia)
Josep Serra Tarragón (Spain)

Wildfires in southern Chile

November 29th, 2019 No comments

Ecosystems in southern Chile are not considered among the typical fire-prone ecosystems such as tropical savannas or mediterranean ecosystems. However, natural wildfires do occur (and has occurred since long ago), during drought periods, and are part of the ecological processes of the region. Here are some examples I have just visited.

Fitzroya cupressoides (alerce in Spanish, lahuán or lawal in Mapuche) is a shade-intolerant long-lived conifer native to the Andes of southern Chile and Argentina. Fitzroya is a monotypic genus in the cypress family. It often coexist with shade-tolerant species of Nothofagus (e.g., N. nitida). The bark of Fitzroya is relatively thick, and postfire tree survival depends on the intensity of fire; fire intensity in these ecosystems is typically patchy and some trees, especially large trees, do survive (Fig. 1 below and [1]). In fact, wildfires remove the shade-tolerant trees and open the space for Fitzroya which regenerates vegetatively (from root suckers) or from seeds coming from the surviving trees. Without wildfires, it would be hard for Fitzroya to compete with shade-tolerant broad-leaved trees.

Fig. 1. Dead and surviving Fitzroya cupressoides trees after fire in Parque Nacional Alerce Costero, Chile

Araucaria araucana (araucaria) is a conifer, considered a living fossil, native to central and southern Chile and western Argentina. It is a non-flammable tree (sensu [2]) because it typically self-prune their lower branches, the crown is quite open, it has a thick bark, and their foliage is hard and difficult to burn. This very low flammability allows Araucaria to survive even in flammable environments [2]. For instance, it occurs in shrublands of Nothofagus antartica (ñirre; see Fig. 2 below); this Nothofagus is a flammable multi-stemmed shrub that has a strong basal resprouting ability. This shrubland burn with some frequency but most Araucaria tree do not get burnt (fire can leave some scars in the trunk, see Fig. 3 below and dendroecological analysis in [3]). Araucaria araucana also growth in dens forests either as dominant tree or with other trees such as Nothofagus pumilo (lenga); such forest rarely burn and the regeneration of araucaria is based on gap dynamics. In fact, the two ecosystems (the shrublands of N. antartica, and the forests of N. pumilo) are an example of alternative biome states [4,5].

Fig. 2. Araucaria araucana growing in a shurbland of Nothofagus antartica (ñirre) in the foothills of the Lanín volcano, Chile
Fig. 3. Fire scars in three araucaria alive trees in the foothills of the Lanín volcano, Chile


[1] Lara A, Fraver S, Aravena JC & Wolodarsky-Franke A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience, 6, 100-109.

[2] Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297. [doi | wiley | pdf]
[post-1 | post-2]

[3] González ME, Veblen TT & Sibold JS. 2005. Fire history of Araucaria–Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32:1187-1202.

[4] Pausas JG. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[5] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trend Plant Sci. [postprint]


Afforestation is not a solution to mitigate CO2 emissions

October 17th, 2019 No comments

“I cannot think of a more tasteless undertaking than to plant trees in a naturally treeless area, and to impose an interpretation of natural beauty on a great landscape that is charged with beauty and wonder, and the excellence of eternity.” – Ansel Adams


Some scientific articles and many newspapers and magazines have spread the idea that planting many trees would be one of the best and most natural ways to fight against climate change. This is because trees fix CO2 through photosynthesis and thus they could lower the atmospheric CO2 concentration. To revert the current CO2 levels, if possible at all, would require the tree plantation to be massive and global. However there is increasing evidence that a massive afforestation is not a solution for mitigating CO2 emissions, and in fact, it could be detrimental, especially in a warming world. Here are the main reasons:

  • Planting trees in grasslands, savannas, shrublands and other open ecosystems (those potential for massive afforestation) would imply a large loss of biodiversity. Many of these environments are ancient, with many endemics to open ecosystems, i.e., species that are shade-intolerant o require large open spaces [1].
  • Potential carbon fixation by afforestation, as estimated by those advocating for massive tree plantations, is largely overestimated. For instance, they often assume that treeless ecosystems do not store C, while many of these ecosystems store a lot of C below-ground (savannas, shrublands, peatlands, …). They also neglect that forest in boreal and high mountain environments absorb more sunlight (reduce albedo) and emit more heat than treeless ecosystems (especially when snowy), and thus they exacerbate global warning. Similarly massive afforestation in arid ecosystems could also reduce albedo (increase darkness). After accounting for all these and other details [2-5], the potential C fixation estimates by afforestation become much lower than previously thought.
  • There are physiological limits to increase ecosystem photosynthesis, and the increase is very slow (compared with the anthropogenic CO2 release). Any increase would require huge amount of water and the concomitant increase in respiration [6].
  • Many of the potential sites for afforestation are in dry seasonal climate, and thus prone to fire, if fuel is available. Massive afforestation would increase the amount and continuity of fuels (landscape homogeneization), increasing the chance of large and intense fires (i.e., abruptly releasing large amounts of CO2); this is already happening with other afforested areas (e.g., 2017 fires in Portugal and Chile [7]). They would also be prone to diseases and insect outbreaks, especially given the ongoing warming.
  • Massive afforestation would reduce land availability for agriculture and grazing; it would also consume a lot of water [8]. All this would trigger a number of socio-economic impacts (e.g., rural depopulation), especially in poor countries.
  • Massive afforestation would be very expensive, yet would not make much C fixation during the next two or three decades (small trees don’t store much C). For C fixation it would be more efficient (and sustainable) to stop deforestation (i.e., to conserve mature forests with trees that are currently fixing C [9]), i.e., to pay subsides to owners or countries for conservation (e.g., Amazon, Indonesia, etc.).

There is no scientific evidence to support massive afforestation to fight against climate change. And we should not get distracted from the urgent actions needed: to drastic reduce fossil fuel use, to invest in alternative energy sources, to stop deforestation and ecosystem destruction, and to restore natural ecosystems.

Note that this message is not against tree plantations per se (e.g., for wood, food, fiber, for improving urban quality, etc.), but to emphasize that all the evidence points against massive afforestation as part of the solution for CO2 mitigation. For instance, planting trees in urban areas would contribute little to CO2 fixation, but have many other benefits, such as reducing the urban heat effect, filtering pollution, improving urban biodiversity and mental health for people, and even reducing the local climate change [10].

Left: species poor afforestation in southern Bulgaria; it burned with a high intensity fire 50 years after plantation (the Kresna fire, 2017). Right: species rich forest-savanna mosaic with frequent natural low intensity fires. Photos: JG Pausas, WJ Bond (from [11])


[1] Bond et al. 2019. The trouble with trees: Afforestation plans for Africa. Trends Ecol. Evol. doi:10.1016/j.tree.2019.08.003

[2] Veldman et al. 2019. On “The global tree restoration potential”. Science 366 (6463) 18 Oct 2019 [doi | link] + see also in the same issue: Lewis et al. [link], Friedlingstein et al. 2019 [link], Luedeling et al. [link], Delzeit et al. [link]

[3] Krause et al. 2019. Pitfalls in estimating the global carbon removal via forest expansion. bioRxiv 788026.

[4] Taylor SD & Marconi S. 2019. Rethinking global carbon storage potential of trees. bioRxiv 730325.

[5] Rahmstorf S. 2019. Can planting trees save our climate? RealClimate

[6] Baldocchi, D. & Peñuelas, J. (2019) The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol., 25, 1191-1197.

[7] Chile 2017 fires: fire-prone forest plantations, | Incendios en Chile 2017,

[8] Feng et al. 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Clim Chan. 6, 1019–1022.

[9] Stephenson et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93 [see also: link]

[10] Pausas J.G., Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69: 143–151. [doi | oup | blog | pdf]

[11] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

Further readings: Texas AgriLife | Wired | Yale e360 | CSIC

Update (2020): additional recent references

Anderegg et al. 2020. Climate-driven risks to the climate mitigation potential of forests. Science, 368(6497).

Friggens et al. 2020. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26:5178–5188

Gómez-González S, Ochoa-Hueso R, & Pausas JG. 2020. Afforestation falls short as a biodiversity strategy. Science, 368(6498), 1439–1439. doi: 10.1126/science.abd3064

Goodell J. 2020. Why Planting Trees Won’t Save Us. Rolling Stone 25/6/2020.

Heilmayr et al. 2020. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nature Sustain, 1–9. doi: 10.1038/s41893-020-0547-0

Jiang et al. 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580: 227-231. (evidence of the limited role of forests and plantations for CO2 mitigation)

Wang et al. 2020. Assessing the water footprint of afforestation in Inner Mongolia, China. J. Arid Environ, 182, 104257.

Bond, W. 2020. Myth-busting forests:

Skelton et al. 2020. 10 myths about net zero targets and carbon offsetting, busted.

Wildfires as an ecosystem service (II)

October 1st, 2019 2 comments

Our paper where we emphasized the role of wildfires in providing ecosystem services [1] had a good reception among those with experience in fire ecology; but it was a surprise for people that never worked on wildfires [2]. The main criticism we have received is that it is very obvious that wildfires can produce negative effects (killing plants and animals, increasing erosion and pollution, burning houses, etc.) and we did not emphasized this in the paper. Of course! Everybody knows it! We have never denied it! In fact, if fire didn’t not kill plants and animals, it would not be an evolutionary pressure! [3]

Rain is a natural process that provides a range of services to humans but certainly not all rainfall events (eg those generating floods) are beneficial to human societies. Biodiversity can also deliver a variety of services, even though there are species capable of harming humans. Likewise, the vast majority of life depends on sunlight, yet we can get sunburn and develop skin cancer after overexposure. In the same way, wildfires can offer a range of ecosystem services [1] but obviously not all fires, and not all fire regimes, provide services to humankind. For instance, if we build houses in a fire-prone (or flood-prone) area, then the inhabitants of those houses are likely to suffer negative impacts when a wildfire (or a major rainfall event) occurs. Similarly, when we substantially increase fuel loads and landscape homogeneity (eg due to a fire exclusion policy, or with a massive and poorly managed tree plantation), the impact of wildfires – especially under novel climatic conditions – can be catastrophic (eg the case of the 2017 fires in Portugal and Chile [4]).

In more general terms, negative impacts to humans often occur when we perturb the historical fire regime: that is, when one or some of the fire regime parameters (ie frequency, seasonality, spread pattern, or intensity) are altered [5]. This is because human societies have adapted to historical fire regimes, or have modulated the fire regime for their own benefit (cultural fire regimes); however, recent abrupt fire regime changes due to modern anthropogenic factors (eg mismanagement, global warming) lead to fire regimes that adversely impact biodiversity and the services they provide (for a few examples, see [5]). This is why we previously suggested that perturbations to the historical fire regime feed back to the functioning of the ecosystem and reduce these services in the same way that major anthropogenic changes in a rainfall regime reduce the services that precipitation provides to humans [1]. Thus, the idea that wildfires can provide ecosystem services stands firmly, even though there are currently some socially unsustainable fire regimes; these negative impacts are well-known by everybody, and widely spread by the media.


Ucrania natural heritage site (Wikimedia, licensed under the Creative Commons).


[1] Pausas J.G. & Keeley J.E. 2019. Wildfires as an ecosystem service. Front. Ecol. & Environ. 17: 289-295. [doi | pdf | blog | brief for managers]  

[2] Pausas J.G. & Keeley J.E. 2019. Wildfires misunderstood. Front. Ecol. & Environ. 17: 431-431 [doi | pdf]

[3] He T., Lamont N.B., Pausas J.G. 2019. Fire as s key driver of Earth’s biodiversity. Biological Reviews [doi | pdf]  

[4] Chile 2017 fires: fire-prone forest plantations, | Incendios en Chile 2017,

[5] Keeley J.E. & Pausas J.G. 2019. Distinguishing disturbance from perturbations in fire-prone ecosystems. Int. J. Wildland Fire 28: 282-287. [doi | IJWF | pdf | blog | brief for managers]  


Humboldt 250

September 14th, 2019 No comments

Recientemente un/a periodista me hizo unas preguntas sobre el artículo que escribí sobre Alexander von Humboldt y su influencia en la ecología actual [1]. Hoy, en el día en que se cumplen 250 años de su nacimiento, transcribo las preguntas y respuestas.

¿Cuál considera que fue la mayor contribución de Humboldt?

Humboldt miró la naturaleza con un rigor científico totalmente inusual en su época, realizando observaciones y mediciones especialmente novedosas. Además, esa manera de mirar la ejerció en regiones muy diversas, lo que le permitió hacer comparaciones y encontrar patrones comunes. Cabe recordar que en aquella época medir variables tan básicas como la latitud, longitud y altitud, no era nada fácil. Por ello, se puede decir que Humboldt fue el primer científico de la naturaleza, lo que hoy en día llamamos un ecólogo.

¿De qué manera sus investigaciones han influido en nuestra visión de la naturaleza?

Haekel definió el término “ecología” (como ciencia) precisamente pensando en la manera en que Humboldt miraba y analizaba la naturaleza. Humboldt se enfocó especialmente en medir variables ambientales (altitud, presión, temperatura, radiación, color del cielo, etc.), y relacionarlas con las especies y comunidades; así descubrió los gradientes altitudinales y latitudinales. Esa visión novedosa de la naturaleza estimuló a muchos naturalistas y dio origen a una nueva ciencia. Muchos naturalistas, ecólogos y biogeógrafos clásicos se inspiraron directa o indirectamente en los trabajos de Humboldt. El movimiento ecologista también se fijó en los comentarios de Humboldt sobre el papel de la humanidad en la naturaleza.

¿Deberíamos cambiar nuestra forma de ver el medioambiente? ¿Por qué?

Hemos aprendido mucho desde Humboldt, y tenemos que seguir avanzando en integrar otros tipos de procesos naturales que Humboldt no observó o no entendió. Por ejemplo, su visión estaba centrada en cómo los parámetros ambientales determinan las especies y comunidades vegetales. Hoy en día sabemos que el ambiente determina muchos procesos ecológicos, pero también sabemos que las características ambientales no lo explican todo. Gran parte de la diversidad de nuestros ecosistemas se explica por las relaciones de interacción entre especies, o por los regímenes de perturbación. Por ejemplo, es imposible entender la gran diversidad de especies en el mediterráneo, o en las sabanas africanas, sin considerar aspectos tales como los incendios y la herbivoría, que mantienen espacios abiertos donde han evolucionado un sinfín de especies que no pueden vivir en bosques o en ecosistemas con poca luz. Humboldt mostró un desconocimiento de las sabanas, que es comprensible porque aún se conocía muy poco sobre los trópicos. En las últimas décadas hemos aprendido mucho del papel de los incendios y de la fauna (actual y extinta) en moldear las especies y las comunidades.

Según su estudio, ¿qué le falta al legado de Humboldt para entender mejor la ecología?

Comprender la naturaleza requiere abordar tres aproximaciones [2]: 1) las relaciones de las especies con el ambiente, 2) las interacciones entre especies, y 3) las relaciones con las perturbaciones. Humboldt profundizó especialmente en la primera, y durante muchos años, gran parte de la ecología fue descendiente de esa visión. Hoy en día estamos aprendiendo mucho de las otras dos aproximaciones. Pero aún hay muchos libros de texto de ecología que se centran en la primera. Por ejemplo, la mayoría de estos libros de texto menciona muy brevemente el fuego y los incendios forestales, y normalmente los presentan como una perturbación que genera dinámica. Es muy raro encontrar un libro de texto que explique que los incendios son, y han sido durante muchos millones de años, una presión de selección que genera biodiversidad, y que no podemos entender una proporción muy importante de la biosfera (al menos los ecosistemas mediterráneos, las sabanas, y los bosques boreales) si no los tenemos en cuenta [3]. Es importante incluir perturbaciones como el fuego y la herbivoría en el centro de la teoría ecológica [1].

Publicaciones relacionas:

[1] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. Journal of Ecology 107: 1031-1037. [doi | pdf] – The long shadow of Humboldt [jecol blog | jgp blog ]

[2] Pausas J.G., Lamont B.B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae. Journal of Biogeography 45: 1469-1477. [doi | pdf]  

[3] He T., Lamont N.B., Pausas J.G. 2019. Fire as s key driver of Earth’s biodiversity. Biological Reviews [doi | pdf]  


Fish and fire

September 12th, 2019 No comments

Are the fish adapted to fire? How can fish benefit from wildfire? The answer is in this 5-minute video.

For more information on animal adaptations to wildfires see:

Pausas J.G., Parr C.L. 2018. Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology 32: 113–125. [doi | pdf]

Pausas J.G. 2019. Generalized fire response strategies in plants and animals. Oikos 128: 147-153 [doi | pdf | blog1 blog2 blog3]


Fire, grasses, and buds

August 26th, 2019 No comments

The traditional view is that C4 grasses are more efficient in open, dry, and warm habitats because they are able to fix more carbon under warm and sunny environments than C3 grasses. However, these habitats are also likely to be fire-prone, and thus their survival may depend on the bud protection mechanisms. Using data from a previous postfire resprouting experiment [1] we show that plant mortality and resprouting response are better explained by the location of the buds than by the photosynthesis pathway (C3 vs C4) [2]. Grasses with aerial buds (stolons) are more exposed to fire and have higher mortality and less resprouting than those with belowground buds (rhizomes); those with buds in the root-crown show an intermediate response (Fig. 1 below). This suggests that carbon reserves are not the only limiting factor for resprouting. The first requirement for initial resprouting is the survival of the bud bank, which depends on the degree of bud protection [3]. Once the initial resprouting occurs, the carbon reserves and the new photo-assimilates should determine the resprouting vigour [4]. In conclusion, to fully understand the variability in postfire resprouting in grasses we need to consider the location and the degree of protection of the bud bank [3]. The bud bank could also had a role, together with C4 photosynthesis, in the massive C4 grass expansion during the Late Miocene (3-8 Ma).

Fig. 1. Mean proportion of postfire tillers in relation to prefire tillers in Australian grasses across treatments aggregated by the species that have different bud locations (stolons, crown, rhizomes), and by the different photosynthetic pathway (C3, C4). From [2].


[1] Moore NA, Camac JS, Morgan JW. 2019. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytologist 221:1424–1433.

[2] Pausas J.G. & Paula S. 2020. Grasses and fire: the importance of hiding buds. New Phytologist [doi | pdf]

[3] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B. & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[4] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121: 1577-1584. [doi | pdf]  

Fire as a key driver of Earth’s biodiversity

July 12th, 2019 2 comments

Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire is likely a major driver of their diversity. In a recent paper [1] we reviewed the mechanisms that enable fire to act as a major ecological and evolutionary force that promotes and maintains biodiversity over different spatiotemporal scales. Specifically, we reviewed the different components of fire regime, the diversity through time (postfire), the intermediate disturbance hypothesis, the pyrodiversity-begets-biodiversity hypothesis, the fire-driven evolution and diversification, and the mutagenic effect of fire.

From an ecological perspective, the vegetation, topography and local weather conditions during a fire generate a landscape with spatial and temporal variation in fire-related patches (pyrodiversity), and these produce the biotic and environmental heterogeneity that drives biodiversity across local, regional and global scales scales [2]. We show that biodiversity should peak at moderately high levels of pyrodiversity. Overall species richness is typically greatest immediately after fire and declines monotonically over time, with postfire successional pathways dictated by animal habitat preferences and varying lifespans among resident plants.

From an evolutionary perspective, fire drives population turnover and diversification by promoting a wide range of adaptive responses to particular fire regimes [3,4]. In addition, fire and its byproducts may have direct mutagenic effects, contributing to the formation of novel genotypes that can lead to trait innovation. As a consequence of all these processes, the number of species in fire-prone lineages is often much higher than that in their non-fire-prone sister lineages.

Figure 1: The six components that define an individual fire event (in red the two core components). The fire regime arises from repeated patterns (means plus variance) over time of the properties of the components for each fire. For more details, see [1].

Figure 2. Relationship between species richness (S) of a reference area (community, landscape, region) and mean fire interval (a fire regime component). For a given fire regime, there is a mosaic of patches defined by different times since the last fire (represented by black circles) about the mean time interval (central circle). For more details, see [1].



[1] He T., Lamont B.B., Pausas J.G. (2019). Fire as s key driver of Earth’s biodiversity. Biological Reviews [doi | pdf]

[2] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecol. Biogeogr. 26: 889–897. [doi | pdf | data & maps (figshare)]

[3] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | pdf]  

[4] Pausas J.G. & Keeley J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65. [doi | pdf]  

Fire promotes pollinators

June 14th, 2019 1 comment

In ecosystems with a dens vegetation, wildfires open the canopy and create an environment with more light and less competition. In such postfire conditions there is an increase in flowers, and thus, flower visitors are also likely to increase. In a recent article [1] we performed a meta-analysis to specifically evaluate the effect of fire (prescribed and wildfires) on pollinators from 65 studies in 21 countries across de globe. The overall effect of fire on abundance and richness of pollinators across all studies was positive. The positive effect was especially clear after wildfires and for the abundance and diversity of Hymenoptera (bees, wasps, etc.; the main group of pollinators), while Lepidoptera (butterflies and moths) abundance showed a negative response. Short fire intervals also showed a negative effect on pollinators. In conclusion, pollinators are not only resilient to fire, but they tend to be promoted during the first postfire years. That is, fires by increasing the number of flowers, they also increase the number of flower visitors. It is also likely that this may have a positive cascading effects on other interacting species, like seed dispersers and predators. This is one of the mechanisms by which wildfires increase diversity. Pollinations is also one of the ecosystem services that fires can provide to humans [2].



Figure:  Weighted-mean effect sizes and 95% bias-corrected confidence intervals on abundance (closed circles) and richness (open circles) of pollinator taxa. This is for wildfire only. Sample sizes for each category are shown on the right of each effect. From [1].


[1] Carbone L.M., Tavella J., Pausas J.G., Aguilar R. 2019. A global synthesis of fire effects on pollinators. Global Ecology & Biogeography. [doi | pdf]

[2] Pausas J.G. & Keeley J.E. 2019. Wildfires as an ecosystem service. Frontiers in Ecology and Environment 17: 289-295. [doi | pdf | post]


Burning for biodiversity

June 1st, 2019 No comments

Taiga alive: Burning for biodiversity conservation in the boreal forest (Sweden):

This video is also available in youtube.

More videos on burning for biodiversity are available for Australia, North Carolina, New hamphshire, Florida, … , See also, a fire ecology lesson from the Florida scrub.


Wildfires as an ecosystem service

May 7th, 2019 No comments

Wildfires are often viewed as destructive disturbances. In a recent paper we propose that when including both evolutionary and socioecological scales, most ecosystem fires can be understood as natural processes that provide a variety of benefits to humankind [1]. Wildfires provide open habitats that enable the evolution of a diversity of shade-intolerant plants and animals that are a source of products used by humans since long ago. Wildfires also regulate pests and catastrophic fires, contribute to the regulation of the water and carbon cycles, and could help plants in their adaptation to novel climates. That is, there are many provisioning, regulating, and cultural services that we obtain from wildfires (box below).  Prescribed fires are a tool for mimicking the ancestral role of wildfires in a highly populated world.

Figure: Schematic representation of the factors occurring at the evolutionary (green square) and at the socioecological (yellow square) scale associated with fire regimes and ecosystem services. Natural (historical) wildfire regimes create open habitats that can promote specific adaptations, biodiversity, and overall functioning in fire-prone ecosystems; these are the supporting services necessary for the production of all other services (table below). Decisions and policies may modify fire regimes (anthropogenic fire regimes) modulating ecosystem functioning and services (socioecological feedback); that is, policy decisions may switch between maintaining ecosystem services (stabilizing feedback) or generating unsustainable fire regimes (disruption of the feedback). Decisions and policies (bottom right corner) include fire and landscape management decisions, but also include socioeconomic changes that have implications on fire regimes (eg rural abandonment [2]). From [1].

Examples of ecosystem services provided by recurrent wildfires to early and to contemporary societies. For more details, see [1]:

  • Provisioning services:
    – Provide open spaces for pastures, agriculture, and hunting
    – Stimulate germination of desirable annual ‘crops’ postfire
    – Provide carbohydrates from underground plant organs
    – Provide craft and basketry material (resprouts)
    – Maintaining open spaces for grazing and hunting
    – Provide essences, medicines, flowers (ornamental)
  • Regulating services
    – Pest control for humans and livestock
    – Reduce catastrophic wildfires
    – Accelerates species replacement in changing conditions
    – Enhance flowering and pollinator activity
    – Water regulation
    – Carbon balance
  • Cultural services
    – Spiritual, inspirational
    – Ecotourism in open ecosystems
    – Recreational hunting
    – Scientific knowledge on the origin of biodiversity
    – Knowledge on ancestral fire management techniques


Cover of the June 2019 issue of Frontiers in Ecology & Environment (17, 6) where our papers is featured. California poppy (Eschscholzia californica) flowering postfire enhances pollination.


Illustrating ecosystems services by fire is not easy; here are some examples of pictures I received to potentially illustrate this paper; most of them did not finally go to the paper. Thanks to the contributes! – [click the photo to enlarge]



[1] Pausas J.G. & Keeley J.E. 2019. Wildfires as an ecosystem service. Frontiers in Ecology and Environment 17: 289-295 [doi | pdf | summary for managers]

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]  


Postfire in a Mexican arid ecosystem

April 24th, 2019 No comments

Arid ecosystems have a climate appropriate for fires, but their low biomass often limits the frequency and intensity of fires; yet they still occur. A recent study evaluated the survival and resprouting of four species 6 months after a fire [1] in Tehuacán-Cuicatlán Biosphere Reserve (Puebla, Mexico), and show that most individuals of the four species survived:

  • Dasylirion lucidum (Asparagaceae): the apical bud of most (97%) plants survived and quickly produced new leaves; few individuals shows basal resprouts.
  • Juniperus deppeana (Cupressaceae): 75% of the trees survived, some resprout from the base, others from epicormic buds (see also here)
  • Echinocactus platyacantus (Cactaceae): 95% survived
  • Agave potatorum (Asparagaceae): 90% survived and continued to growth new leaves from the central of the plants

All species are endemic of Mexico except Juniperus deppeana that also occurs in the southwestern USA (Arizona, Texas, New Mexico).


Landscape dominated by Dasylirion lucidum 6 months after a fire in Tehuacán, Mexico [1].


Dasylirion lucidum (a), Juniperus deppeana with epicormic resprouts (b), Echinocactus platyacantus (c), and Agave potatorum (d) six months postfire in Tehuacán, Mexico [1].



[1] Rodríguez-Trejo, D. A., Pausas, J. G. & Miranda-Moreno, A. G. 2019. Plant responses to fire in a Mexican arid shrubland. Fire Ecology 15:11 [doi | pdf]  

[2] Pausas J.G. Flammable Mexico. Int. J. Wildland Fire 25: 711-713 [doi | pdf]

More on: México fires | Juniperus deppeana postfire |



Disturbance and perturbations

April 18th, 2019 No comments

Fire is a key process in many ecosystem (fire-prone ecosystems), where it is best viewed as a natural disturbance that benefits to ecosystem functioning. However, increasingly, we are seeing human interference in fire regimes that alters the historical range of variability for most fire parameters and results in vegetation shifts. Such perturbations can affect all fire regime parameters. In a recent paper [1] we provide a brief overview of examples where anthropogenically driven changes in fire frequency, fire pattern, fuels consumed and fire intensity constitute perturbations that greatly disrupt natural disturbance cycles and put ecosystems on a different trajectory resulting in type conversion. These changes are not due to fire per se but rather anthropogenic perturbations in the natural disturbance regime. That is, the critical factor determining system resilience is not fire but the perturbations of fire regime. Of course, in ecosystems where fire is not a natural process (e.g., rainforests), we should consider fire itself to be a perturbation.

Examples of perturbations of the fire regime, specifically alterations of the fire interval:

Entire chaparral landscape in the frame burned in 1970, half of the foreground burned again in 2001 and the far right third of the foreground burned a third time in 2003, all by human-caused ignitions. Vegetation recovery following the 2001 fire comprises native shrub and subshrub regeneration, those areas burned a third time in 2003 are dominated by alien red brome grass invasion (photo by R. W. Halsey [1]).


Massive lodgepole (Pinus cortata) forest regeneration following the 1988 North Fork Fire, which burned over 200.000 ha of Yellowstone lodgepole forests, was partially reburned after 28 years in the 2016 Maple Fire of 18.200 ha. This atypical short interval resulted in very little regeneration (immaturity risk); casual observations in the summer of 2018 revealed, 10 to 1 ratio of adult skeletons to seedlings, clearly not stand-replacing recruitment (photo by J. E.Keeley [1]).



[1] Keeley J.E. & Pausas J.G. 2019. Distinguishing disturbance from perturbations in fire-prone ecosystems. Int. J. Wildland Fire [doi | IJWF | pdf]


Cambio climático, políticas medioambientales y gestión del territorio

April 15th, 2019 1 comment

No hay duda que el planeta está sometido a un calentamiento global causado por al incremento de CO2. Para evitar una pérdida de calidad de vida y de biodiversidad, se necesitan políticas de reducción de CO2, que se deben realizar a todos los niveles, tanto personal, como a nivel municipal, regional y global. Pero además de estas políticas de CO2, existen otras políticas locales relacionadas con la gestión del territorio, que pueden ser muy relevantes para luchar contra el cambio climático. En nuestro clima mediterráneo existen dos factores clave, el régimen de incendios y el régimen de sequías, que actualmente están siendo perturbados. En un artículo reciente [1] se propone que existen principalmente tres factores locales que determinan la actual dinámica de la vegetación y que afectan a los incendios y las sequías en nuestros ecosistemas:

a) El abandono rural en un entorno depauperado de herbívoros salvajes. Este aumenta las áreas de monte (áreas forestales), pero también la abundancia y continuidad de la vegetación, que es el combustible que alimentan los incendios forestales. Ello incrementa la probabilidad de incendios grandes e intensos y de incendios en la interfaz agrícola-forestal.

b) El incremento de la población urbana viviendo o visitando zonas semiurbanas (por ejemplo, incremento de viviendas en la interfaz urbano-forestal). La consecuencia es un incremento de: 1) la degradación de la biodiversidad (por ejemplo, incrementa la introducción de especies exóticas, la contaminación lumínica, el uso ineficiente del agua, etc.); 2) la probabilidad de incendios (más igniciones tanto accidentales como provocadas); y 3) la vulnerabilidad de la sociedad a los incendios (se ponen en peligro vidas e infraestructuras).

c) La degradación costera, que aumenta la sequía a través de procesos de retroalimentación negativa; es decir, la desecación de las marismas costeras, la deforestación para la agricultura y, más recientemente, la explosiva urbanización costera, han reducido drásticamente los ecosistemas originales (y su evapotranspiración) y, por lo tanto, el agua disponible para la brisa marina que en el pasado alimentaba las lluvias en las montañas de la costa [1].

Por lo tanto, las políticas de gestión del territorio para luchar contra el cambio climático deben enfocarse a dos objetivos principales: gestionar los incendios, y reducir las sequías; siempre evitando que la gestión afecte negativamente a la biodiversidad.


Figura: La perturbación de los regímenes de incendios naturales y sequías en los paisajes mediterráneos está determinada tanto por factores globales como locales. El aumento de la actividad de incendios se debe a la cantidad de combustible y la homogeneidad del paisaje generada por el abandono rural en un entorno depauperado de herbívoros y con crecientes igniciones (de origen humano) y sequías. El aumento de las condiciones secas es consecuencia del calentamiento global, pero también de las pérdidas por tormentas causadas por la perturbación del ciclo del agua generado por la degradación de los ecosistemas costeros. El incremento de población semi-urbana se refiere al incremento de población urbana viviendo en o visitando zonas de monte, incluyendo zonas de la interfaz urbano-forestal.


Políticas para la gestión de incendios: La tolerancia cero a los incendios no ha funcionado ni en España ni en ningún otro país; al contrario, la extinción total de los incendios genera ecosistemas con gran acumulación de biomasa que cuando arden lo hará con elevada intensidad produciendo incendios de grandes dimensiones (megaincendios). Esto es lo que se llama la paradoja de la extinción de los incendios. Por lo tanto, el reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente [2,3]. Eliminarlos es imposible, antinatural y ecológicamente insostenible [4]. Por lo tanto, en áreas cerca de zonas urbanas debe potenciarse los incendios pequeños, frecuentes, y de baja intensidad, sea aprovechando incendios naturales o realizando quemas prescritas. Además, la introducción de herbívoros, sean nativos (rewilding) o ganado, puede reducir la cantidad de combustible y por lo tanto limitar los incendios y facilitar las quemas prescritas. La gestión de los incendios también implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. Los mecanismos para limitar estas zonas pueden ser diversos, incluyendo la recalificación de terrenos (a no urbanizables), o la implementación de tasas (disuasorias) por construir en áreas con alto riesgo de incendios, entre otros. En las zonas ya urbanizadas, se requiere forzar la realización de planes de evacuación y multar la falta de autoprotección alrededor de las viviendas, de manera que se reparta la responsabilidad entre administración y propietarios.

Políticas para la conservación del clima: Una manera de reducir las sequías es potenciar el ciclo del agua que ha sido perturbado por la degradación de la costa. Esto implica, la conservación, restauración, y ampliación de la mayor zona posible de vegetación nativa en la zona más litoral, y en especial de los marjales litorales. Es decir, la conservación de los marjales litorales son importantes no solo para la conservación de la biodiversidad, sino también para la conservación del clima. Además, en las zonas urbanas y semiurbanas se debería potenciar los parques, jardines y zonas verdes con abundante vegetación, así como plantar árboles en todas las calles posibles. La evapotranspiración que realizaría toda esta vegetación (en sistemas naturales, urbanos y semiurbanos), beneficiaría al ciclo del agua y contribuiría a la conservación del clima. Además, la vegetación en zonas urbanas y semiurbanas también beneficia a la calidad de vida en muchos otros aspectos que no abordamos aquí. Dado que pequeños incrementos de temperatura en la costa tienen implicaciones en toda las montañas vecinas [1], es importante reducir el efecto ‘islas de calor’ que ejercen las zonas urbanas de la costa. Para ello, se podría potenciar el uso de materiales de construcción con elevada reflectividad en superficies horizontales (tejados, calles, patios, etc), cosa que disminuiría el efecto de calor urbano; además, las viviendas construidas con estos materiales requieren un menor uso de la calefacción. En la zona de montaña, se puede potenciar el uso de colectores de niebla para obtener agua para la agricultura o otros usos.

En conclusión, además de disminuir la concentración de CO2 en la atmósfera, existe un gran número de acciones que se pueden realizar con políticas locales, y que contribuirían en gran manera a la disminución de los efectos del calentamiento global y al aumento de la calidad de vida.

Más información en:
[1] Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 96:143-151. [doi | oup | blog | pdf]

[2] Pausas J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

[3] Pausas J.G. 2018. Incendios forestales, encrucijada natural y social. En: Ecología de la regeneración de zonas incendiadas (García Novo F., Casal M., Pausas J.G.). Academia de Ciencias Sociales y del Medio Ambiente de Andalucía. pp. 9-14. [pdf]

[4] Pausas J.G. 2017. Acabar con los incendios es antinatural e insostenible. 20minutos (Ciencia para llevar), 13 Julio 2017. [20minutos]


Carta a los no votantes: votar suma, la abstención resta

April 13th, 2019 No comments

Hay muchas razones por las que una persona puede decidir no ejercer su derecho al voto, pero básicamente se pueden clasificar en dos grupos. El primero se refiere a aquellas con poca conciencia política y poco interés por participar en la sociedad; la abstención es un acto de dejadez (abstención pasiva). El segundo grupo representa todo lo contrario, personas políticamente activas, con ideas claras, a menudo activas en luchas sociales o medioambientales, pero que no creen en el sistema electoral o están decepcionados con los partidos políticos actuales (abstención activa). A las primeras les diría que pensar a escala social, en lugar de individual, es enormemente enriquecedor. Al segundo grupo de personas es al que ahora me dirijo. A menudos son personas admirables por su lucidez en criterios, su coherencia en actividades sociales, y su persistencia en luchas altruistas. No votan por unos supuestos principios, o por cuestiones históricas, o como un acto de protesta. Es verdad que las luchas diarias y continuadas son mas importantes que ir a votar cada 4 años, pero las dos cosas no son incompatibles, y la segunda puede aliviar a muchas personas y puede facilitar a la primera. Votar no será la mejor manera de construir una sociedad justa, pero es una herramienta que tenemos muy a mano. Votar es un acto muy sencillo, requiere solo unos pocos minutos de dedicación, no tiene coste alguno, no genera efectos secundarios, ni es incompatible con las actividades sociales. Hay quien dice que votar no sirve de nada, pero es difícil de creer que estas personas y sus descendientes puedan tener los mismos derechos y oportunidades si en el gobierno domina gente del tipo Rajoy/Aznar o del tipo Carmena/Colau (por poner ejemplos contrastados). Votar no es casarse con nadie, ni opinar igual que nadie. Votar no quiere decir que te gusta la candidatura votada; da lo mismo que ningún político te guste o que ninguno opine en todo igual que tu. Votar no es estar de acuerdo con el sistema, ni implica dejarse de quejar del mal funcionamiento de los partidos y los políticos. Votar es incrementar la probabilidad de que el gobierno, delante de cada decisión, elija la opción que a ti te gustaría; solo eso, aumentar la probabilidad. La abstención como protesta puede ser conceptualmente coherente pero tiene el efecto de disminuir la probabilidad de que se consiga lo preferido. Votar suma, la abstención resta. Y si dudas a quien votar, es preferible votar al azar entre los que dudas, que no votar. Porque se vote o no, el gobierno se formará, las decisiones se tomarán, y las leyes se impondrán, todo en base a la opinión de los que votan (abstenciones, nulos, y blancos, no cuentan para la formación del gobierno). Votar es saber que no ganará tu candidatura porque no somos mayoría; o sea votar es una frustración, como en tantas luchas, pero es una acción sencilla y barata, un granito de arena para intentar mejorar la situación, y es totalmente compatible con las demás luchas.


Fuente: revista Al Margen (Valencia), núm. 63, 2007

Texto escrito después de oír las excusas de un grupo de personas que decían que no iban a ir a votar en las elecciones del 28 de abril de 2019.


“Lo mejor que desa la derecha es que la izquierda fragmentada se abstenga”  J.J. Tores en Votar o no votar, esa es la cuestión, InfoLibre 11/10/2019.

The perch effect

March 30th, 2019 No comments

The perch effect refers to the process in which trees are used as perches by frugivorous birds, and because these birds defecate and/or regurgitate seeds while perching, they generate an increased recruitment of fleshy-fruited plants below the trees [1]. Thus, seed rain, and the resulting seedling recruitment and sapling spatial pattern of bird-dispersed (fleshy-fruited) plants is highly patchy and largely restricted to microhabitats beneath trees, in contrast to the pattern of other plants (e.g., wind-dispersed plants [1]). This effect is commonly observed in abandoned fruit orchards in the Mediterranean region, such as those oldfieds of carob trees [1], and thus is an example of how some of the species traditionally considered “late-successional species” occur at early stages of the oldfield succession.

In a recent visit to the Doñana Natural Park (southern Spain) I saw some of the most impressive cases of perch effect (photos below). Pines (Pinus pinea) were widely planted in the region during the 20th C and are currently the dominant tree of the area. However, little by little, junipers (Juniperus phoenicea) are naturally colonizing the area. They have fleshy fruits dispersed by birds, and thus they recruit below the pines where the bird perched. Some of the junipers has grown enough that the effect cannot be unnoticed at all. There are places where most pines have a juniper growing below. It is nice to feel the dynamic of this ecosystem, and the recolonization of the natural habitat.

The importance of bird perching for the dispersal of many plants is one of the reasons why dead trees after a fire should not be cut down, as too often is done in Spain (example1, example2). They help the colonization of bird-dispersed plants (as well as they are habitat for many animals, they reduce the water impact on the soil, retain fog, maintain certain humidity, etc.).


Juniperus phoenicea colonizing Pinus pinea (stone pine) plantations



[1] Pausas J.G., Bonet A., Maestre F.T., Climent A. 2006. The role of the perch effect on the nucleation process in Mediterranean semi-arid oldfields. Acta Oecologica 29: 346-352. [doi | pdf]

More on: Pines | Doñana postfire | Juniperus

Generalized fire strategies in plants and animals (2)

February 1st, 2019 No comments

Our paper “Generalized fire response strategies in plants and animals” is the Editor’s Choice of the last Oikos issue (128:2, February 2019).

In addition, one of my pictures has been selected for the cover!

Thanks @Oikos_Journal

Description of the image: Charaxes jasius taken in the middle of a burnt area (colonizing) 10 days after the wildfire that burned with very high intensity in Òdena, Barcelona, NE Spain (August 2015). Photo: JG Pausas


Other journal covers using my pictures

Trends in Plant Science 22 (13)                                 Journal of Ecology 105 (2)


The long shadow of Humboldt

January 15th, 2019 No comments

Behind the paper “Humboldt and the reinvention of nature” [1]. Text simultaneously published here and in

It all started when I was reading an excellent book by Andrea Wulf entitled The Invention of Nature: Alexander von Humboldt’s New World. The book provides many details about Humboldt’s fascinating life and the wide-ranging influence he had on science and society. When reading the book, you can easily understand the unquestionable role Humboldt played in the history of ecology and biogeography. One of his many contributions to science was to set the basis for explaining how environmental factors affect species distribution; for example, he demonstrated that vegetation systematically varies across the world with climate and showed the ecological similarities between altitude and latitude.

Fig. 1. Vegetation of Chimborazo (Ecuador) by Humboldt and Bonpland (1807).

A question that came to my mind was not covered by the book; namely, to what extent does Humboldt’s view bias our vision of nature? This is relevant because many classical naturalists and ecologists, such as Henry David Thoreau, Charles Darwin, George Perkins Marsh, John Muir, Rachel Carlson, Frederic E. Clements, and Henry A. Gleason, were all inspired by Humboldt. By spreading a vision, they shaped what is today mainstream ecology and the environmental movement. The current emphasis on the role of climate and soil in many ecological and evolutionary studies, the emphasis on forests as the potential and most important vegetation, and the difficulties many researchers have accepting the ecological and evolutionary role of disturbances at broad scales, suggest that we are still largely viewing nature through the eyes of Humboldt.

After reading the book, I was lucky enough to be in London for a conference and met William Bond in a pub just next to Kew Gardens. We stayed hours talking about many things, mainly fire, grazing, alternative stable states, and all the wonders of ecosystems maintained by disturbances. Our conversation jumped from one country to the other, from one biome to the other, and from one continent to another. And when talking about the overwhelming role that many researchers attribute to the environment when explaining broad temporal and spatial vegetation patterns [2], we glimpsed the long shadow of Humboldt. That conversation in a quiet London pub was the seed of this paper (and of another to come). Talking with William is always enjoyable because of his enthusiasm, experience, and creativity.

Now that we are approaching the 250th anniversary of Humboldt’s birth, it is instructive to evaluate his legacy of climate and soil as primary factors explaining broad vegetation patterns. There is increasing evidence that many open, non-forested ecosystems (savannas, grasslands, and shrublands) cannot be predicted by climate and soil – and are ancient and diverse systems maintained by fire and/or vertebrate herbivory. Paleoecological and phylogenetic studies have shown the key role of fire and grazing at geological time scales (Fig. 2). In this paper [1], we propose moving beyond the legacy of Humboldt by embracing fire and large mammal herbivory as key factors in explaining the ecology and evolution of world vegetation. This implies understanding grasslands, savannas, and shrublands as ancient and diverse ecosystems that require conservation, including the processes that maintain them (grazing and wildfires).

Fig. 2. Changes of the drivers related to plant consumers (fire and herbivory), together with the evolution of different vegetation types, and some plant traits (serotiny and thick bark of pines, epicormic resprouting in eucalypts), along the evolutionary history of plants. Upper pointing triangles are peaks of O2 atmospheric concentration and fire activity; lower-pointing triangles are megafauna extinction events, also associated to fire activity peaks. Note that modern fire regimes are very recent, and at this scale they are almost a point. From [1].


Fig. 3. Alexander von Humboldt and Aimé Bonpland on the foot of Chimborazo, painting by Friedrich Georg Weitsch (1810)

[1] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. [doi | jecolblog | pdf]

[2] Pausas J.G. & Lamont B.B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae J. Biogeogr. 45: 1469-1477. [doi | pdf]

Global change in the Mediterranean basin

January 9th, 2019 2 comments

The paleartic region with mediterranean climate (southern Europe and northern Africa; the Mediterranean Basin; Fig. 1) is a hotspot of biodiversity, a hotspot of climate change (warming of the region is above global average), and a hotspot of human population (a highly populated area and a top tourist and retirement destination). In addition, the Mediterranean Sea is the world’s largest inland sea, and climatic disruptions in the region have consequences in the large catchment area that includes central-eastern Europe (Fig. 1). That is, environmental changes and disruptions of the water cycling in the Mediterranean region have consequences affecting a large human population [1].

Fig. 1. Area with mediterranean climate (green) and limits of the Mediterranean catchment (red).  The European catchment limit based on Cortambert (1870). From [1].

The region, as all the planet, is subject to global warming. In addition there are three main local processes (not directly related to global warming) that are very important in understanding dynamic changes in the region [1]:

a) Rural abandonment in an environment depauperate of native herbivores; this increases wildlands (greening) but also the abundance and continuity of fuels that feed wildfires [2]

b) Increasing the wildland-urban interface; this increases biodiversity degradation (e.g., alien species), fire ignitions, and the vulnerability of the society to fires

c) Coastal degradation enhances drought (browning) through negative feedback processes; that is, the desiccation of coastal marshes, the deforestation for agriculture, and more recently, the explosive coastal urbanization, have drastically reduced the original ecosystems and thus the water available for the sea breeze that was once feeding the rain in the upper part of the mountains [1].

All these mechanisms act in different directions (greening, browning), and the current balance is still towards greening, as land abandonment is buffering the browning drivers; however, it is likely to switch with global warming. The challenge is to mitigate the browning processes. The good news is that the importance of small-scale drivers suggests that local policies and actions can make a difference in reducing overall impact on the landscape and society.

Mechanisms acting at a fine scale, together with global drivers (CO2 enrichment and climatic warming) interact and drive current vegetation changes in Mediterranean landscapes. Any model aiming to predict the future of our vegetation and climate must consider these local mechanisms; and failing to consider them at an appropriate scale is likely to produce inconclusive predictions.

Fig. 2. The disruption of the natural fire and drought regimes in Mediterranean landscapes is driven by global and local drivers. Increased fire activity is a response to the fuel amount and landscape homogeneity generated by rural abandonment (fire hazard) in an environment depauperated of herbivores and with increasing human ignitions (fire risk) and droughts (fire weather). The increased dry conditions are the consequence of global warming, but also of storm losses caused by the disruption of the water cycle generated by the coastal degradation. WUI: wildland-urban interface. From [1].


[1] Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69: 143-151 [doi | OUP | pdf]  

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]  

Every time you build anything, a highway, a school, whatever, you are altering the precipitation regime somewhere downwind” Millán M. Millán

Incendios forestales: encrucijada natural y social

December 28th, 2018 No comments

En febrero de 2018, poco después del incendio de Doñana (Las Peñuelas, 2017), la Academia de Ciencias Sociales y el Medio Ambiente de Andalucía organizó en Sevilla un seminario sobre regeneración después de incendios. A partir de ese seminario, se ha realizado un libro con algunas de las ponencias. Tuve la suerte de que me invitasen a dar la charla inaugural del seminario y a escribir un capitulo introductorio en el libro. Aquí abajo copio algunos fragmentos de mi capítulo. El texto entero del capítulo está disponible en PDF aquí. El libro entero también está disponible en PDF aquí y en en la Academia



Los incendios forestales constituyen procesos complejos, a muchas escalas. Los físicos aún tienen enormes dificultades para modelar y predecir el comportamiento del fuego a escalas temporales y espaciales pequeñas, debido a la complejidad de la vegetación y las interacciones con los parámetros meteorológicos. A escalas mayores, en paisajes heterogéneos, con historia, y con personas asentadas en él, la complejidad es enorme. Prueba de ello es que el llamado ‘problema’ de los incendios forestales no está resuelto ni en nuestro país ni en ningún otro. Parte de la dificultad probablemente resida en un enfoque poco apropiado para abordar el tema. Lo más probable es que se necesite un cambio de paradigma en cuanto a cómo entendemos los incendios forestales en nuestros paisajes. Para este cambio de paradigma se requiere acumular evidencias, cultivar el pensamiento crítico, y romper algunos mitos. Aquí estamos para contribuir a ello.

Régimen de incendios

El clima mediterráneo es propenso al fuego porque tiene una vegetación densa, una estación seca, y tormentas secas (que provocan igniciones). Por lo tanto, como mínimo, hay incendios desde que tenemos clima mediterráneos (hace unos pocos millones de años), aunque hay evidencias de carbones fósiles producto de incendios desde que las plantas colonizaron el medio terrestre. A lo largo de la historia geológica el régimen de incendios ha ido cambiando, es decir, han ido cambiando características tales como la frecuencia, la intensidad, la estacionalidad, el tamaño, o el tipo de propagación. Y estos cambios han sido debidos a las variaciones a escala geológica de la concentración de oxígeno en la atmósfera, a cambios en el clima y en la vegetación, y a variaciones en la abundancia y tipo de herbívoros.

A una escala temporal más reciente (humana), los regímenes de incendios se han ido modificando según el uso del fuego, los cambios antropogénicos del paisaje, de la ganadería/pastoreo, de las políticas de gestión y, finalmente, los cambios climáticos recientes (antropogénicos). Todos estos cambios han ido modificando el régimen de incendios en diferentes direcciones, a veces de manera abrupta. Por ejemplo, el aumento de la población está asociado a un mayor número de igniciones; el incremento de la agricultura está asociado a la disminución de los incendios; y el reciente abandono rural conllevó un incremento de estos, especialmente de su tamaño. De manera que la dinámica del régimen de incendios está fuertemente ligada a cambios socio-económicos.


La larga historia de incendios ha conllevado que muchas plantas mediterráneas tengan rasgos o estrategias que les confieren supervivencia y capacidad de reproducción en ambientes con incendios recurrentes (rasgos adaptativos a los incendios). Existe una variedad de rasgos de este tipo; por ejemplo, muchas plantas rebrotan muy bien aunque se quemen totalmente, gracias a tener yemas en estructuras subterráneas protegidas por el suelo, o protegidas debajo de cortezas gruesas. Otras especies germinan de manera abundante después de los incendios, y así aprovechan la elevada disponibilidad de recursos tras el paso del fuego; y en muchos casos, estas especies aumentan su tamaño poblacional respecto al tamaño previo al incendio. Otras especies florecen rápida y abundantemente después de un fuego, aprovechando las condiciones favorables. Todo ello genera una frenética actividad de plantas y animales durante la primavera después de los incendios. La gran mayoría de plantas mediterráneas presenta alguna de estas estrategias para vivir en zonas con incendios recurrentes (ver aquí), aunque cambios bruscos en el régimen pueden conllevar problemas ecológicos.

Los bosques no son la única alternativa

Aunque la vegetación potencial de muchos ecosistemas pueda ser el bosque cerrado, la larga historia de incendios ha producido la apertura en los bosques de manera tan recurrente que han evolucionado especies típicas de matorrales abiertos que ni siquiera pueden vivir dentro del bosque. De hecho no es raro encontrar matorrales más diversos que bosques. Por lo tanto, la sociedad debería poner más en valor los ecosistemas que no son bosques, tales como los matorrales, las dehesas y los pastizales; todos ellos con una elevada diversidad en nuestro territorio. El fuego genera espacios abiertos, y da oportunidad a especies heliófilas, tanto de plantas como de animales. Sin incendios recurrentes nuestro paisajes serían más pobres en especies.

Incendios en el antropoceno

A pesar del carácter natural y antiguo de los incendios, el incremento de igniciones (aumento de la población urbana en ambientes semi-rurales), la elevada continuidad de la vegetación (por abandono rural y falta de herbívoros), y el cambio climático, junto con la política de exclusión del máximo número de incendios, nos lleva en conjunto muy a menudo a regímenes de incendios fuera del rango histórico, donde la mayor frecuencia de incendios de grandes dimensiones podría generar problemas ecológicos y sociales. En un mundo con climas y paisajes cambiantes, la gestión de los incendios (que no la exclusión o extinción), resulta de suma importancia.

La gestión debe partir del conocimiento de que los incendios son propios de los ecosistemas mediterráneos. La política de tolerancia cero a los incendios no ha funcionado en ningún país del mundo. El reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente. Eliminarlos es imposible, antinatural y ecológicamente insostenible. Para generar esos paisajes resilientes se precisan acciones a distintos niveles, tales como aceptar abiertamente un cierto régimen de incendios, crear discontinuidades en paisajes forestales homogéneos (por ejemplo, mosaicos agrícola-forestales), o reducir el combustible (pastoreo y quemas prescritas) en zonas estratégicas o próximas a viviendas.  También implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. A los efectos ambientales que supone la expansión de estas zonas de interfaz (por ejemplo, en biodiversidad, especies invasoras, contaminación lumínica y visual, etc.), hay que añadir que constituyen una gran fuente de igniciones, y que convierten en catastróficos (socialmente) incluso a regímenes de incendios ecológicamente sostenibles.

En conclusión

Se están acumulando evidencias que sugieren que hasta ahora teníamos una visión muy incompleta y sesgada de los incendios forestales, relegándolos a un factor externo que destruye ecosistemas y genera problemas ecológicos y sociales. Los estudios realizados en los últimos años sugieren un cambio de visión, donde los incendios constituyen una característica interna de los sistemas socio-ecológicos, una perturbación natural en muchos ecosistemas y una herramienta de gestión para moldear los regímenes de incendios futuros. Por ello se requiere que aprendamos a convivir con los incendios. Este cambio de paradigma se hace más urgente con el cambio climático, ya que la actividad de incendios está aumentando, y solo se puede abordar si se integra los incendios y el fuego dentro de nuestros sistemas socio-ecológicos.


Lecturas relacionadas

Pausas J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082. [doi | pdf | supp]

Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

Chergui B., Fahd S., Santos X., Pausas J.G. 2018. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems 21: 619–628. [doi | pdf | post]

Pausas J.G. 2018. Incendios: cambios recientes y soluciones.

Pausas J.G. 2018. Incendios forestales, encrucijada natural y social. En: Ecología de la regeneración de zonas incendiadas (García Novo F., Casal M., Pausas J.G.). Academia de Ciencias Sociales y del Medio Ambiente de Andalucía. pp. 9-14. [pdf | libro]

Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience. [doi | pdf]


Fast postfire flowering

November 22nd, 2018 No comments

Some plants flower very quickly after fire. The advantage of this postfire-flowering is probably the increased resource availability and the reduced competition for pollination in recently burned areas. Here are some examples of fast postfire flowering (click the image to enlarge).

I’d be happy to add more examples, so please feel free send me more pictures (by email or twitter), with at least the species name, and if possible, the time since fire and locality.

Monocots: Asparagales


Monocots: Other orders (Arecales, Poales, Pandanales, Liliales)




Details of each photo (alphabetic order)

  • Argemone albiflora (Papaveraceae), after the Walker Fire on the east slope of the Sierra Nevada near Mono Lake in California, by Jesse Miller (@Texosporium)
  • Asphodelus ramosus (Asphodelaceae), 1 month postfire, Valencia, Spain by JGP
  • Bulbostylis paradoxa (Cyperaceae) one month after a fire, Costa Rica, by JGP
  • Calopogon multiflorus (Orchidaceae), 13 days postfire, Florida, by Todd Angel (@ecologyangel)
  • Calystegia macrostegia (Convolvulaceae), Santa Barbara, California, by Erin Hanan (@erinjhanan)
  • Chamaerops humilis (Arecaceae), 1 month postfire, eastern Spain, by JGP
  • Cyrtanthus contractus (Amaryllidaceae), 3 days postfire, Hluhluwe iMfolozi Park, South Africa, by Heath Beckett (@HeathBeckett)
  • Echinacea paradoxa (Asteraceae), Missouri, by Jesse Miller (@Texosporium)
  • Gladiolus illyricus (Iridaceae), eastern Spain, by Toni Bolufer
  • Iris lutescens (Iridaceae), 1 month postfire, Valencia, Spain by JGP
  • Lapiedra martinezzi (Amaryllidaceae), eastern Spain, by JGP
  • Mairia coriacea (Asteraceae), SW Cape, by H. Luzeyer (from @TheFynbosTrail)
  • Narcissus triandrus subsp. pallidulus (Amaryllidaceae), central Spain, by JGP
  • Rodophiala advena (Amaryllidaceae), Chile, by JGP
  • Scilla autumnalis (Asparagaceae), 1 month postfire, eastern Spain, by JGP
  • Stenanthium densum (Melanthiaceae), 50 days postfire, Florida Longleaf Pine Savanna
  • Urginea maritima (Asparagaceae), 1 month postfire, eastern Spain, by JGP
  • Vellozia pyrantha (Velloziaceae), 2 weeks postfire, Chapada Diamantina NP, Bahia, Brazil by A.A. Conceiçao (J Nat Cons 2018)
  • Watsonia borbonica (Iridaceae), 8 months postfire, slopes of the Table Mountain, South Africa, by Jakob’s Vineyards (@JakobsVineyard)
  • Xanthorrhoea (Asphodelaceae), by Susie Green (@SusieGreen4)


Pinos, ¿nativos o exóticos?

November 19th, 2018 No comments

Recientemente se ha generado una cierta controversia sobre si hay pinos autóctonos o no en España y si se deben eliminar de algunos hábitats. Aquí un grupo de ecólogos de la AEET(*) intentamos ayudar a cerrar el debate.


Sobre los pinos ibéricos

Hace tiempo que existe un debate abierto sobre el carácter autóctono (nativo) o no de los pinos, y, recientemente, el debate se ha reavivado en relación a las revisiones de listas de especies exóticas. A escala regional la respuesta es clara: sí que hay pinos autóctonos en nuestro territorio, tanto en la península Ibérica como en las islas Baleares e islas Canarias. Por ejemplo, si consultamos una obra de referencia tal como la Flora Ibérica, veremos que se mencionan seis especies de pinos autóctonos. Y si analizamos registros de polen en estratos antiguos de turberas, o el registro fósil, o los estudios de biogeografía, vemos que todo indica que han existido pinos en nuestros paisajes desde hace millones de años, aunque no siempre podamos distinguir las especies concretas. De hecho, ninguna de las especies de pino ibéricas aparece en el Catálogo Español de Especies Exóticas Invasoras del Gobierno (a fecha de 15-10-2018).

Cada una de estas diferentes especies de pino tiene sus requerimientos y preferencias ecológicas; unas especies viven a baja altitud y soportan bien el calor y la sequía, otras viven en las montañas y están adaptadas al frío; unas viven sobre cualquier tipo de suelo, otras evitan los suelos calizos o los suelos muy ácidos; unas se regeneran muy bien incluso después de incendios intensos, otras prácticamente desaparecen si arden con elevada intensidad. Es decir, no todas las especies de pinos pueden vivir en cualquier parte; las diferentes especies se distribuyen a lo largo y ancho de la Península siguiendo unos patrones concretos relacionados con el clima, el suelo y los incendios, además de con el uso del territorio realizado desde antaño. En algunas zonas, los pinos forman masas densas, homogéneas y monoespecífias; en otras, la densidad es baja o muy baja y se mezclan con otras especies de árboles (bosques y dehesas mixtas) o con especies arbustivas (matorrales con pinos). Y hay zonas en las que prácticamente no crecen pinos de forma natural, ya sea por condiciones ambientales o por regímenes de perturbación no apropiados, o por competencia con otras especies más adaptadas a esas situaciones. Los humanos, a lo largo de la historia, han ido modificando la distribución natural mediante cortas, talas, plantaciones y restauraciones forestales, con el objetivo de aprovechar los recursos que proporcionan los pinos (madera, resina, piñones, protección del suelo, etc.). A pesar de ello, aún podemos apreciar relaciones entre la presencia o densidad de pinos de las diferentes especies y las características ambientales de los sitios, indicadoras de diferencias ecológicas entre las especies.

Lista de especies nativas, y principales especies exóticas, de la familia de los pinos (pináceas) en la península Ibérica, islas Baleares e islas Canarias:

Pináceas nativas:

Pinus halepensis (pino carrasco)
Pinus nigra subsp. salmannii (pino salgareño o laricio)
Pinus pinaster (pino rodeno)
Pinus pinea (pino piñonero)
Pinus sylvestris (pino albar o silvestre)
Pinus uncinata (pino negro)
Pinus canariensis (pino de Canarias; exclusivo de las Islas Canarias)
Abies alba (abeto)
Abies pinsapo (pinsapo)

Principales pináceas exóticas:

Pinus radiata (la mas abundante; origen: norteamérica)
Pseudotsuga menziessi (origen: norteamérica)
Laris decidua (origen: centro Europa)


Sobre las plantaciones y la restauración de los ecosistemas

Los objetivos y métodos para la restauración del medio natural han ido variando a lo largo de la historia a medida que ha ido evolucionando las prioridades, el conocimiento y la conciencia medioambiental. Por ejemplo, antiguamente, se plantaban árboles (reforestación) para restaurar áreas degradadas sin pensar mucho en su origen, ni teniendo en cuenta si la especie era o no autóctona ni si la variedad era local o no, y sin considerar si las densidades y estructura reflejaban las condiciones naturales y el hábitat para otras especies. Cuando más adelante se plantaron pinos autóctonos, algunas veces se hizo en zonas típicas de la especie, y otras en zonas donde la especie estaba ausente o en baja densidad. En cualquier caso, estas restauraciones cumplían algunos de los objetivos de la época (por ejemplo, frenar la erosión) y aún son visibles en nuestros paisajes. Por su estructura, densidad y heterogenidad, actualmente las plantaciones de pinos a menudo se asemejan bastante a ecosistemas naturales, cumpliendo una función ecológica importante; en otras ocasiones, sin embargo, se parecen más a cultivos para producción de madera. Una de las principales diferencias entre estos “cultivos de madera” y los demás cultivos es que los primeros son más propensos a propagar fuegos intensos, especialmente si están deficientemente gestionados. Esta repercusión en los incendios forestales puede tener consecuencias sociales y ambientales adicionales y requieren de una especial atención.

Actualmente, los objetivos de la restauración incluyen la conservación de la biodiversidad. Existe un gran acuerdo entre los ecólogos y gestores del medio ambiente en que ni los pinos, ni los bosques en general, constituyen la única alternativa en paisajes mediterráneos; los matorrales son también autoctónos, naturales, diversos y antiguos, y contribuyen en gran medida a la elevada biodiversidad de los ecosistemas mediterráneos, además de favorecer la protección de sus suelos. Cada vez más se tiende a realizar restauraciones ecológicas introduciendo especies y variedades locales, y no solo de árboles, sino también de arbustos y especies herbáceas. La sociedad actual convive con plantaciones y restauraciones realizadas con criterios del pasado, donde las percepciones ambientales y el conocimiento ecológico eran muy diferentes. Esta convivencia genera cierto conflicto social y está en el origen de muchos debates sobre la naturaleza nativa o no de los pinares.

Fotos, de izquierda a derecha: P. nigra (Cazorla, por Juli G. Pausas), P. halepensis (Bages, centro de Catalunya, por Jordi Garcia-Pausas), P. uncinata (Pirineo de Andorra, por Jordi Garcia-Pausas), P. pinea (Doñana, Pedro Jordano).

Sobre los pinares litorales en dunas

Un claro ejemplo del conflicto mencionado lo constituyen los pinares sobre dunas (por ejemplo, en Doñana o en Guardamar). En muchos casos, estas dunas se poblaron masivamente de pinos (en Doñana hay plantaciones documentadas desde el s. XVI, aunque masivas sólo en el s. XX). La finalidad de estas plantaciones era bienintencionada: fijar las dunas, crear puestos de trabajo, y generar un ambiente forestal agradable. En aquella época, se valoraba más cualquier estructura arbolada densa, aunque fuese pobre en especies, que un matorral, por muy diverso en especies que fuera. Además, plantar pinos era mucho más fácil y agradecido (mayor supervivencia) que plantar otras especies arbóreas. Con los años, esos pinares han pasado a formar parte de nuestro paisaje cultural. La vegetación original de estas dunas litorales era probablemente un mosaico donde alternaban arbustos y árboles pequeños típicos de la máquia esclerófila mediterránea, plantas de los brezales y sabinares ibéricos, y herbáceas propias de dunas; en ellas, la densidad de pinos era baja y variable según las condiciones topográficas, del nivel freático y salino, y las especies acompañantes. El sobrepastoreo y la explotación de leña fue degradando esos ecosistemas y generando erosión y movimientos no deseables de las dunas. En ese marco ambiental se realizaron las plantaciones de pino.

Cabe destacar que tras el incendio que afectó a los pinares de la zona de Doñana (julio 2017), se ha constatado una regeneración muy satisfactoria de muchas de las especies del mosaico de matorral y brezal que dominaron antes de las plantaciones, mientras que el pino prácticamente no se regenera. Si se facilita y potencia la regeneración de estos matorrales, que son muy diversos en especies, los incendios (inevitables) que ocurran en el futuro serán menos intensos (por la menor biomasa) y se regenerarán más rápidamente; por lo tanto, estas comunidades serían más sostenibles. Por tanto, desde el punto de vista ecológico, y en el contexto del calentamiento global, la reducción de la densidad de pinos en dunas litorales está en muchos casos justificada, mientras se realice de manera cuidadosa y favoreciendo la vegetación alternativa que puede albergar importantes valores de conservación. En cualquier caso, ante cualquier intención de reducción drástica del pinar, se debería evaluar con detalle las consecuencias, ya que plantaciones antiguas también pueden tener actualmente especies que dependan de ellas.

En conclusión

Vivimos en un territorio heterogéneo con una historia compleja, donde las dinámicas naturales se han visto frecuentemente alteradas por unos usos del territorio cambiantes en intensidad y objetivos. La presencia de pinos autóctonos en nuestro país es indiscutible, pero este hecho no justifica su plantación en cualquier sitio ni de cualquier manera. El conocimiento adquirido en los últimos años sobre la biodiversidad y la ecología de nuestros bosques, junto con la amenaza del cambio climático, nos lleva a repensar la gestión de las plantaciones de pino, y en general, la gestión de los recursos naturales. Mediante una planificación integrada del territorio deberíamos poder decidir con criterios objetivos dónde son preferibles pinares lo más naturales posibles (por ejemplo, en áreas protegidas), dónde queremos plantaciones de pinos para la protección del suelo y la regulación hídrica, y dónde queremos plantaciones de pinos productivas y sostenibles.

(*) Los miembros de la AEET que han contribuido a este texto son: Pedro Jordano (CSIC), Francisco Lloret (UAB-CREAF), Juli G. Pausas (CSIC), Anna Traveset (CSIC-UIB), Fernando Valladares (CSIC).

Este texto se ha publicado simultáneamente (19-11-2018) aquí y en el blog del CREAF (tanto en castellano como en catalán). Una versión resumida también se publico en (29-11-2018).


Llutxent y la pérdida de suelo

October 30th, 2018 2 comments

Después de un incendio, lo peor que puede ocurrir es que haya pérdida de suelo. Por ello se aconseja visitar pronto las zonas afectadas con el fin de detectar puntos donde es posible que esto ocurra, y en su caso, poder aplicar medidas para evitarlo. En la zona mediterránea las zonas con posible pérdida de suelo suelen ser puntuales dentro del área afectada por el incendio. Estas zonas sensibles suelen estar asociadas a pendientes pronunciadas, suelos poco pedregosos, texturas arenosas, bancales abandonados, etc.. Entre las medidas para evitar la pérdida del suelo se incluye cubrir la parte sensible con paja o similar (empajado o mulching, que evita el contacto directo de las gotas de agua con el suelo), la siembra de hierbas de crecimiento rápido, o la colocación de troncos en fajas para reducir los movimientos de suelo.

En el pasado agosto ardieron unas 3200 ha en el incendio de Llutxent, afectando principalmente a los municipios de Llutxent, Gandia y Pinet (provincia de Valencia). Poco después del incendio se iniciaron acciones para proteger el suelo de la erosión, tales como la corta de pinos muertos y su colocación en el suelo en fajas. Sin embargo, estas acciones se están aplicando de forma generalizada, incluyendo zonas muy pedregosas y con poca pendiente (ver fotografías), o donde la regeneración de la vegetación es buena. En estas zonas no es previsible que haya erosión, y por lo tanto esta acción parece ecológica y económicamente innecesaria. En algunos casos, podría ser perjudicial si las acciones realizadas afectan a la regeneración natural. De hecho, con las lluvias de las semana pasadas, ya se podría evaluar si realmente ha servido para algo estas acciones y si vale la pena continuarlas.


Acciones que se están realizando en la zona afectada por el incendio de Lutxent (fotos tomadas en septiembre y octubre, 2018, por R. Badenes y J.G. Pausas).


Actualización, 27 Nov 2018: Hace unas semanas en Llutxent llovió entre 300-600 mm en pocos días, y no se ha observado erosión en sitios pedregosos y poco inclinados. A pesar de esto, se sigue aumentando las fajas para frenar la erosión … (pincha en la foto para ampliar)


Más información:


Autumn in Cazorla

October 18th, 2018 No comments

This autumn, Sierra de Cazorla (Jaén, Spain) is full of fleshy fruits, a feast for wildlife.


Fruits of Taxus baccatta (left), Lonicera arborea (center, white), Crataegus monogyna (right, top), Rosa sp. and Berberis hispanica (bottom, black), all taken from plants one next to the other.