Archive

Archive for July, 2022

Fire regimes across the western Palearctic

July 20th, 2022 No comments

Fire regimes are shaped by climate, landscape structure, and the frequency of ignitions [1] and so globally vary across space, biogeographies, and environments. In a recent paper [3] we show how different fire regime parameters (e.g., area burnt, size, intensity, season, patchiness, pyrodiversity) varia across western Palearctic (Europe, North Africa, Near East) using remotely sensed data. We first divided the study area into eight large ecoregions based on their environment and vegetation: Mediterranean, Arid, Atlantic, Mountains, Boreal, Steppes, Continental, and Tundra. Then we characterize the fire regime for each region. The results show that the Mediterranean had the largest, most intense, and most recurrent fires, but the Steppes had the largest burnt area. Arid ecosystems had the most extended fire season, Tundra had the patchiest fires, and Boreal forests had the earliest fires of the year. The spatial variability in fire regimes was largely explained by the variability of climate and vegetation, with a tendency for greater fire activity in the warmer ecoregions. There was also a temporal tendency for fires to become larger during the last two decades, especially in Arid and Continental environments.

Figure 1. Fire size and fire intensity in eight ecoregions across western Palaearctic. From [3]
Fig. 2. Mean fire size (ha) and mean fire intensity (MW) in relation with Temperature of the driest quarter, for the eight ecoregions (colors as in Fig. 1 above). From [3].

References

[1] Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Front. Ecol. & Environ. 19: 387-395. [doi | wiley | pdf ]

[2] Pausas J.G. & Ribeiro E. 2013. The global fire-productivity relationship. Global Ecol. & Biogeogr. 22: 728-736. [doi | pdf | appendix | erratum ]

[3] Pausas J.G. 2022. Pyrogeography across the western Palearctic: a diversity of fire regimes. Global Ecol. & Biogeogr. [doi | wiley | pdf |data: dryad]