Archive

Posts Tagged ‘resprouting’

Evolutionary Ecology of Fire

November 4th, 2022 1 comment

Fire is an evolutionary pressure that shaped our biodiversity [1,2]. In a recent paper we summarized the current state of the art in this topic [3]. Fire has been an ecosystem process since plants colonized land over 400 million years ago [1]. Many diverse traits provide a fitness benefit following fires, and these adaptive traits vary with the fire regime [4]. Some of these traits enhance fire survival, while others promote recruitment in the postfire environment. Demonstrating that these traits are fire adaptations is challenging, since many arose early in the paleontological record, although increasingly better fossil records and phylogenetic analysis (figure below) make timing of these trait origins to fire more certain. Resprouting from the base of stems is the most widely distributed fire-adaptive trait, and it is likely to have evolved under a diversity of disturbance types. The origins of other traits like epicormic resprouting [5], lignotubers [6], serotiny [7], thick bark [8], fire-stimulated germination [9], and postfire flowering are more tightly linked to fire. Fire-adaptive traits occur in many environments: boreal and temperate forests, Mediterranean-type climate (MTC) shrublands, savannas, and grasslands. MTC ecosystems are distinct in that many taxa in different regions have lost the resprouting ability and depend solely on postfire recruitment for postfire recovery [10]. Overall, evolutionary fire ecology not only provides an understanding of the origin and history of our biota, it also sets the basis for the management of our ecosystems in a world undergoing fire-regime changes.

Time of origin (x-axis) of five different fire traits (different colors) for different lineages (y-axis) estimated from dated phylogenies. Bars expand the uncertainty of the time of origin (e.g., stem versus crown age). From [3]

References

[1] Pausas JG & Keeley JE 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doiOUP | pdf | post]

[2] He T, Lamont NB, Pausas JG 2019. Fire as s key driver of Earth’s biodiversity. Biol. Rev. 94:1983-2010. [doi | pdf

[3] Keeley JE & Pausas JG 2022. Evolutionary ecology of fire. Ann. Rev. Ecol. Evol. Syst. 53: 203-225. [doi | pdf] <- New paper

[4] Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA 2011. Fire as an evolutionary pressure shaping plant traits. Trends Pl. Sci. 16: 406-411. [doi | sciencedirect | trends | pdf | For managers]

[5] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends Pl. Sci. 22: 1008-1015. [doi | sciencedirect | pdf] [post | Cover image]

[6] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phyt. 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[7] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Pl. Sci. 39:140-172. [doi | pdf | suppl.]

[8] Pausas JG 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.] & Pausas JG 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf]

[9] Pausas JG & Lamont BB 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97: 1612-1639. [doi | pdf | supp. mat.]

[10] Pausas JG & Keeley JE 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phyt. 204: 55-65. [doi | wiley | pdf]

Marmaris postfire regeneration

December 5th, 2021 No comments

During last summer, over 170,000 ha burnt in Turkey. One of these fires was the Marmaris fire, a fire of about 12,500 ha in SW of the country. The area includes part of the Marmaris National Park and an Special Environmental Protection Area. Most of the area were covered by Pinus brutia forests, a Mediterranean pine that has some serotinous cones.

Four months after the Marmaris fire, I visited the area together with Çagatay Tavsanoglu. Some plants were resprouting and some geophytes flowering (Cyclamen, Arisarum). Pine seedlings had started to germinate; there were also many other seedlings but still too small to identify them (e.g., Cistus species). Below are a few examples of plants that were regenerating after the fire (click on the photos to enlarge them).

 

Pinus yunnanesis

January 16th, 2021 2 comments

In the Yunnan Province of China, P. yunnanensis occurs in two growth forms: as a tree (var. yunnanensis) and as a shrub (var. pygmea) [1]. The shrubby form occurs mainly in upper slopes and ridges (Fig. 1), where soils are poor and dry, and fires are likely. This shrubby pine is very interesting and quite unique among pines: it has serotinous cones (Fig. 2), and resprouts after fire from basal buds (Fig. 3), generating multi-stemmed shrubby pine populations [1]. Serotiny is common among pines [2] while resprouting is not [3], so pines with both serotiny and resprouting are rare; and having a multi-stemmed growth form is even rarer.

Fig. 1. Pine shrubland (Pinus yunnanensis var. pygmea) in Yunnan, China. Photo C. Luo [1]
Fig. 2. Pinus yunnanensis var. pygmea showing serotinous cones, Yunnan, China. Photo: W.-H. Su [1]
Fig. 3. Pinus yunnanensis var. pygmea resprouting from basal buds after a fire, Yunnan, China. Photo: JG Pausas [1]

References

[1] Pausas JG, Su W-H, Luo C, & Shen Z. 2021. A shrubby resprouting pine with serotinous cones endemic to Southwest China. Ecology [doi | pdf]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Pl. Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

Fire, grasses, and buds

August 26th, 2019 No comments

The traditional view is that C4 grasses are more efficient in open, dry, and warm habitats because they are able to fix more carbon under warm and sunny environments than C3 grasses. However, these habitats are also likely to be fire-prone, and thus their survival may depend on the bud protection mechanisms. Using data from a previous postfire resprouting experiment [1] we show that plant mortality and resprouting response are better explained by the location of the buds than by the photosynthesis pathway (C3 vs C4) [2]. Grasses with aerial buds (stolons) are more exposed to fire and have higher mortality and less resprouting than those with belowground buds (rhizomes); those with buds in the root-crown show an intermediate response (Fig. 1 below). This suggests that carbon reserves are not the only limiting factor for resprouting. The first requirement for initial resprouting is the survival of the bud bank, which depends on the degree of bud protection [3]. Once the initial resprouting occurs, the carbon reserves and the new photo-assimilates should determine the resprouting vigour [4]. In conclusion, to fully understand the variability in postfire resprouting in grasses we need to consider the location and the degree of protection of the bud bank [3]. The bud bank could also had a role, together with C4 photosynthesis, in the massive C4 grass expansion during the Late Miocene (3-8 Ma).

Fig. 1. Mean proportion of postfire tillers in relation to prefire tillers in Australian grasses across treatments aggregated by the species that have different bud locations (stolons, crown, rhizomes), and by the different photosynthetic pathway (C3, C4). From [2].

References

[1] Moore NA, Camac JS, Morgan JW. 2019. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytologist 221:1424–1433.

[2] Pausas J.G. & Paula S. 2020. Grasses and fire: the importance of hiding buds. New Phytologist [doi | pdf]

[3] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B. & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[4] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121: 1577-1584. [doi | pdf]  

Postfire in a Mexican arid ecosystem

April 24th, 2019 No comments

Arid ecosystems have a climate appropriate for fires, but their low biomass often limits the frequency and intensity of fires; yet they still occur. A recent study evaluated the survival and resprouting of four species 6 months after a fire [1] in Tehuacán-Cuicatlán Biosphere Reserve (Puebla, Mexico), and show that most individuals of the four species survived:

  • Dasylirion lucidum (Asparagaceae): the apical bud of most (97%) plants survived and quickly produced new leaves; few individuals shows basal resprouts.
  • Juniperus deppeana (Cupressaceae): 75% of the trees survived, some resprout from the base, others from epicormic buds (see also here)
  • Echinocactus platyacantus (Cactaceae): 95% survived
  • Agave potatorum (Asparagaceae): 90% survived and continued to growth new leaves from the central of the plants

All species are endemic of Mexico except Juniperus deppeana that also occurs in the southwestern USA (Arizona, Texas, New Mexico).

 

Landscape dominated by Dasylirion lucidum 6 months after a fire in Tehuacán, Mexico [1].

 

Dasylirion lucidum (a), Juniperus deppeana with epicormic resprouts (b), Echinocactus platyacantus (c), and Agave potatorum (d) six months postfire in Tehuacán, Mexico [1].

 

References

[1] Rodríguez-Trejo, D. A., Pausas, J. G. & Miranda-Moreno, A. G. 2019. Plant responses to fire in a Mexican arid shrubland. Fire Ecology 15:11 [doi | pdf]  

[2] Pausas J.G. Flammable Mexico. Int. J. Wildland Fire 25: 711-713 [doi | pdf]

More on: México fires | Juniperus deppeana postfire |

 

 

Llutxent 1 month postfire

September 18th, 2018 No comments

In early August a wildfire ignited by a lightning burned about 3200 ha, affecting mainly the municipalities of Lutxent, Gandia and Pinet (in Valencia, Spain). One month later I visited the area, and below are the main plant species that were already resprouting. There were also two species already flowering, both geophytes: Urginea (Drimia) maritima and Scilla autumnalis; they showed flowers but not the leaves (they are protanthous: flowering before the foliage appears [1]). There were also many seedling germination from the seedbank, but they were too small to identify. 

The area affected by the fire include a small marginal population of Quercus suber (cork oak; el surar de Pinet) that we had studied few years ago [2]. This oak was also resprouting (epicormically).

(click to the photo to enlarge)

 

Notes and references

[1] The terminology of the flower/leaf phenology is a bit confusing; here is my understanding following Simpson (Plant Systematics, 2011) and Lamont & Downes (2011, Pl. Ecol. 212):

· Synanthous (syn= same time): flowers and leaves develop at the same time
· Hysteranthous: flowering occurring out of phase with leafing
· Protanthous (pro= early): flowers develop before the leaves
· Seranthous (ser= delayed): flowers develop after the leaves

[2] Pausas J.G., Ribeiro E., Dias S.G., Pons J. & Beseler C. 2006. Regeneration of a marginal Cork oak (Quercus suber) forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17: 729-738. [pdf | doi | wiley]

More on postfire flowering | Quercus suber (cork oak)

Thanks to E. Laguna for his help on the species identification.

 

BROT 2 – a mediterranean plant trait database

July 10th, 2018 No comments

We have released a new version of the BROT database on plant functional traits for Mediterranean Basin species [1]. BROT 2.0 is an improved and expanded version of BROT 1.0 [2]; while the first version focused on fire related traits, the version 2.0 is more general and include a higher diversity plant functional traits. BROT 2 includes 25,764 individual records of 44 traits from 2,457 plant taxa distributed in 119 taxonomic families.


The structure of the BROT 2 database is very simple and include four files (or tables) linked by IDs: the Data file (the main file), the Taxa file, Sources file, and an additional Synonymous file. Tables 5, 6, 7, and 9 refer to the place in the paper [1] with the definitions of the corresponding field.Geographical scope of BROT in the Mediterranean Basin. Circles are the locations of the data (for records with geographical coordinates), with colors indicating the number of records. The blue region refers to the Mediterranean climate area following Quézel & Médail (2003).
 

References

[1] Tavsanoglu Ç. & Pausas J.G. 2018. A functional trait database for Mediterranean Basin plants. Scientific Data 5: 180135 [doi | SciDat | pdf | data | BROT web]

[2] Paula, S., M. Arianoutsou, D. Kazanis, Ç. Tavsanoglu, F. Lloret, C. Buhk, F. Ojeda, B. Luna, J. M. Moreno, A. Rodrigo, J. M. Espelta, S. Palacio, B. Fernández-Santos, P. M. Fernandes, and J. G. Pausas. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420-1420. [doi | ESA journals | Ecological Archives | pdf | BROT web]

 

A fire ecology lesson from the Florida scrub

June 11th, 2018 No comments

Fire is a key ecological factor in many Mediterranean shrublands [1]. But there is another shrubland, the Florida scrub, that share many characteristics with mediterranean ecosystems. Fire is frequent in the Florida scrub, and most plant strategies to deal with fire are the same to those found in mediterranean ecosystems, despite the species are different (a likely case of convergent evolution). The Florida scrub occurs on sandy soils of the Florida Peninsula (USA), under a subtropical climate.

Eric Menges, a fire ecologist at Archbold Biological Station in Florida, explains in this 16-minute video the main adaptive traits of plants to live in the Florida scrub. In his words “the lack of fire is a bigger disturbance than the fire”. All strategies explained in the video also occur in most mediterranean regions, including the Mediterranean Basin (i.e., from Portugal to Syria).

Video “Surviving fire in the Florida scrub”, also available in youtube.

[Versión en español]

El fuego es un factor ecológico clave en muchos matorrales mediterráneos [1,2]. Pero hay otro matorral, el matorral de la Florida, que comparte muchas características con los ecosistemas mediterráneos. El fuego también es frecuente en este matorral, y la mayoría de las estrategias de las plantas para persistir después de incendio son las mismas que las que se encuentran en los ecosistemas mediterráneos, a pesar de que las especies son diferentes (con ejemplos de evolución convergente). El matorral de Florida aparece en suelos arenosos en la península de la Florida (EEUU), en clima subtropical.

Eric Menges, ecólogo en la Estación Biológica Archbold en Florida, explica en este video de 16 minutos los principales estrategias adaptativas de las plantas para vivir en el matorral de Florida. En sus palabras, “la falta de fuego es una perturbación más importante que el fuego”. Todas las estrategias explicadas en el video también ocurren en la mayoría de las regiones mediterráneas, incluida la Cuenca Mediterránea (de Portugal a Siria, pasando por España, claro).

 

References

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]

[2] Pausas J.G. 2012. Incendios forestales. Una visión desde la ecología. Catarata-CSIC. [Libro]

 

Marjal del Moro postfire

May 3rd, 2018 No comments

‘Marjal del Moro’ is a small coastal wetland located in the municipalities of Puçol and Sagunt (Valencia, Spain). It is a Special Area of Conservation (SAC; ZEC in Spanish) and a Special Protected Area for the conservation of birds (SPA; ZEPA in Spanish), of the European Union. In January the 4th a wildfire burned 320ha which is ca. 80% of the wetland. Here are some dynamics after the fire.

1 month after the fire (18th February 2018):

At this time, Tamarix trees (salt ceder) were not resprouting, but some other plants already started to resprout (click to enlarge):

 

4 months after fire (1st May 2018):

Note that the two trees (salt ceders, Tamarix) are the same ones from the picture above (taken in February). At this time, Tamarix species were already resprouting (click to enlarge):

 

Thanks to E. Laguna for his help on the species identification.

 

Doñana postfire – Doñana posincendio

April 2nd, 2018 No comments

[English version]

Last summer, between Jun 24 and Jul 4 (2017), a wildfire burned ca. 10,000 ha of the Doñana Natural Park (Las Peñuelas fire, Moguer, Huelva, Spain); the fire did not affect the adjacent Doñana National Park (National P. + Natural P. = 108,000 ha). Most of the area burned was a shrubland in a fixed dune system that had been afforested with Pinus pinea during the early 20th C. Now, nine months after fire, there are many plants from the original shrubland that are resprouting and many seeds germinating (pictures below); most of the pines are dead with very poor or null regeneration, so part of the afforestation (which is much larger than this fire) is lost.

From the ecological point of view, this fire provides an opportunity to replace part of the afforestation with the natural shrubland, and thus the wildfire may help to restore the original ecosystems and their biodiversity. This ecosystem will also benefit from having more water available, as tree consume a lot of water. In addition, future fires occurring in the shrubland without the tree layer would be also less intense. Consequently, the regenerating shrubland will be more natural and more resilient to future fires than the prefire pine woodland.

 

[Versión en español]

El verano pasado, entre el 24 de junio y el 4 de julio (2017), un incendio afectó ca. 10.000 ha del Parque Natural de Doñana (incendio de Las Peñuelas, Moguer, Huelva, España); el fuego no afectó al Parque Nacional de Doñana adyacente al parque natural (P. Nacional + P. Natural = 108.000 ha). La mayor parte del área quemada era un matorral en un sistema de dunas fijas en el que se había plantado pinos (Pinus pinea) a principios del siglo XX. Ahora, nueve meses después del incendio, hay muchas plantas del matorral original que están rebrotando y muchas semillas germinando (ver fotos); la mayoría de los pinos están muertos y presentan una regeneración muy pobre o nula, por lo que una parte de la repoblación de pinos (que era mucho más grande que este incendio) ha desaparecido.

Desde el punto de vista ecológico, este incendio brinda la oportunidad de reemplazar la repoblación por el matorral natural y, por lo tanto, el incendio pueden ayudar a restaurar los ecosistemas originales y diversos de Doñana. Estos ecosistemas también se beneficiarán de una mayor disponibilidad de agua, ya que hasta ahora una parte era consumida por los pinos. Además, los incendios futuros que ocurran en estos matorrales sin pinos serán menos intensos. En consecuencia, el matorral en regeneración será más natural y más resiliente a los incendios futuros que el pinar anterior.

UPDATE (Jan 2019): this post has inspired the following article:

Leverkus AB, Murillo PG, Doña VJ, Pausas JG. 2019. Wildfires: opportunity for restoration? Science 363 (6423): 134-135. [doi | science | pdf]

 

Types of resprouters

February 2nd, 2018 No comments

Many plants resprout after disturbance; there is a diversity of way in which a plant can resprout as there is a diversity of bud-bearing structures that form bud banks [1,2]. We can classify resprouters as follows [1,2]:

Basal resprouters

  • Species resprouting from buds located belowground in non-woody (fleshy or fibrous) swellings like bulbs, corms, non-woody rhizomes, stem tubers, root tubers or belowground caudex. They are specially common (but not exclusive) in monocots and ferns, and are characteristic of the geophyte growth form. They occur in many ecosystems, often tied to seasonal stresses. They are abundant in many fire-prone ecosystems, with remarkable examples of species with fire-stimulated flowering [3].
  • Species resprouting from an specialized underground woody structure like a basal burl (lignotuber, xylopodium) or a woody rhizome. They define the geoxyle growth form (see below) and are strongly tied to fire-prone ecosystems.
  • Species that resprout from a non-specialized basal structure like roots and the root crown. They occur in many ecosystems, not only fire-prone ones.

Aerial resprouters (aeroxyles)

  • Some trees resprout from buds located along the stems, even after relative intense fire (crown-fire); these are epicormic resprouters [2]. The buds are protected from the heat of the fire by a thick bark [4] or are well sunken in the stem (eucalypts). They are typical of some fire-prone ecosystems [2].
  • Some plants (e.g., palms, tree ferns, cycads) resprout after fire from the stem apex: apical resprouters. This is not a typical resprouting from dormant buds, but from the original apical bud that survived thanks to the protection by leaf bases and scales.

The term geoxyle was used by some early botanists [5,6] for a plant growth form with large woody underground structures and with an aboveground biomass of only a few years’ duration. Latter, the term geoxylic suffrutice was proposed for these plants with deciduous or short-lived shoots with a massive underground structure [7] (also termed ‘underground trees’). Consequently, the term geoxyles can be applied to any plant with a massive underground woody structure (e.g., xylopodium, lignotuber, woody rhizomes [1]), and suffrutescent geoxyles to those with herbaceous seasonal stems, typically lignified at the base. Many savanna plants are suffrutescent geoxyles (e.g., Fig. 1). Many mediterranean plants are shrub geoxyles like the lignotuberous species ([6] and Fig. 2), or the shrubby oaks that have woody rhizomes (Quercus coccifera, Q. gambelli). Given the large underground structure of geoxyles, they are very good postfire resprouters and live mostly in fire-prone ecosystems; i.e., the geoxyle growth form is likely an adaptation to fire-prone environments [1,9].

Fig. 1. Andira laurifolia (suffrutescent geoxyle, underground tree) showing the underground woody rhizomes (from Warming 1893 [10]). See also Fig. 3 below.

Fig. 2. Arctostaphylos glandulosa (shrub geoxyle) showing the lignotuber (from Jepson 1916 [11])

 

Fig. 3. Seasonal dynamics of a suffrutescent geoxyles with a woody rhizome and seasonal shoots. From [12].

 

References

[1] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B., Fidelis A. 20.18 Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist  [doi | pdf | suppl. | BBB database]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | sciencedirect | pdf]

[3] Fire-stimulated flowering

[4] Pausas, J.G. 2015. Bark thickness and fire regime. Funct Ecol 29:317-327. [doi | pdf | suppl.]

[5] Lindman C.A.M. 1914. Nagra bidrag till fragan: buske eller trad? K. Vetenskapsakademiens Arsbok 12, Upsala. (mentioned in [6])

[6] Du Rietz GE. 1931. Life-forms of terrestrial flowering plants. Acta Phytogeogr. Suecica 3: 1-95.

[7] White F. 1977. The underground forest of Africa: a preliminary review. Singapore Gardens’ Bulletin 24: 57-71.

[8] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology 217: 661-676. [doi | pdf | suppl.]

[9] Lamont BB, He T, Pausas JG. 2017. South African geoxyles evolved in response to fire; frost came later. Evolutionary Ecology 31: 603–617. [doi | pdf | suppl.]

[10] Warming E. 1893. Lagoa Santa: étude de géographie botanique. Revue Générale de Botanique 5: 145-158, 209-233. 

[11] Jepson WL. 1916. Regeneration in manzanita. Madroño 1: 3-12.

[12] Bond WJ. 2016. Ancient grasslands at risk. Science 351: 120-122.

More on resprouting

 

A diversity of Belowground Bud Banks (BBB) for resprouting

January 15th, 2018 No comments

Many plants are able to survive recurrent disturbance by resprouting from a bud bank. In fire prone ecosystems, plants must protect their buds from fire heat or perish. One way to protect them is by growing a thick insulating bark or sink the buds in the stem [1,2]. Another way is to locate the buds below ground, as soil is an excellent heat insulator (belowground bud bank or BBB). In fire-prone ecosystems, there is a diversity of ways by which plants successfully conceal their buds below ground that enable them to survive and resprout vigorously after fire [3]. There are at least six locations where belowground buds are stored [3]: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs (figure below). Considering their history and function, these organs may be divided into three groups:

(a) Those that originated in the early history of plants and that currently are widespread; they act as a resprouting source after a range of disturbances, not just fire. These include bud-bearing roots and root crowns.

(b) Those that also originated early and have spread mainly among ferns and monocots; they are often tied to seasonal stresses and have been highly successful under recurrent fire regimes. Theses include non-woody rhizomes and a wide range of fleshy underground swellings. They are characteristic of the geophyte growth forms occurring in many ecosystems, often tied to seasonal stresses; they have been highly successful under recurrent fire regimes.

(c) And those that originated later in history and are strongly tied to fire-prone ecosystems. These are woody rhizomes, lignotubers and xylopodia. They are characteristic of the geoxyle growth form.

Recognizing the diversity of BBBs is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances.

Figure: Stylized diagrams of 16 belowground bud bank structures that enable plants to resprout postfire (highlighted in red). Broken horizontal line indicates position of soil surface. Structures characterized by woody tissues, in pink; fleshy tissues, in blue; and neither woody nor fleshy, in orange (usually highly sclerified primary tissues, fibrous or ‘wiry’). Shoots highlighted in apple green: stems with leaves, branched; leaves only, unbranched. Roots highlighted in olive green: triangular-shaped roots indicate a primary system, those arising directly from the bud-storing structures are adventitious. Drawings from [3]. From top left to bottom right:

· Xylopodium (in red) joined to tuberous root (in blue); Lignotuber; Root Crown; Woody Rhizome, here arising from a burl
· Bud-bearing lateral Root arising (here) from a burl (the root is not necessarily woody); Taproot Tuber; Bulb; Corm, with previous year’s corm still present
· Stem Tuber; Non-woody Fleshy Rhizome; Rhizophore (note buds are only supported by the oldest rhizophores); Adventitious Root Tuber
· Non-woody fibrous Rhizome with a monopodial arrangement leading to expansive clone; Non-woody fibrous Rhizome with sympodial arrangement leading to a caespitose habit; Stolons that produce new ramets postfire (note that it is not a BBB); Belowground Caudex

For details and a full description of each structure, see reference [3].

References
[1] Pausas J.G. 2017. Bark thickness and fire regime: another twist. New Phytologist 213: 13-15. [doi | wiley | pdf | post1, post2]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | pdf | post ]

[3] Pausas J.G., Lamont B.B., Paula S., Appezzato-da-Glória B., Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist  [doi | pdf | suppl | BBB database]

More posts on resprouting

 

Pinus canariensis epicormic resprouting

November 23rd, 2017 No comments

The cover of the December issue of Trends in Plant Science (22:12) is a picture of Pinus canariensis resprouting epicormically (from stem buds) 3 months after a fire in Tenerife (Canary Islands, Nov 2012). It features our review paper on this type of resprouting [1]. Many plants resprout from basal buds after disturbance, however epicormic resprouting is globally far less common, and the Canary Island pine is a very good example; it resprouts in this way even after intense crown fires.

 

[1] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: 1008-1015. [doi | sciencedirect | pdf | post ]

More on: epicormic resprouting | pines | resprouting

 

Juniperus deppeana postfire

November 18th, 2017 No comments

Some trees species, like many Eucalyptus, resprout from a lignotuber (a basal burl [1]) when young, and from epicormic (stem) buds [2] at the adult stage. This seems also the case for Juniperus deppeana (alligator juniper), at least the ones from the Trans-Pecos region, Far West Texas, USA. Big trees can survive surface fires (Fig. 1a below) thanks to their relatively thick bark (Fig. 1b). In the upper part of the Guadalupe mountains, a fire in May 2016 spread throughout the surface, crowning in some specific spots. In these areas, smaller trees were resprouting from lignotubers (Fig. 1c) while large trees were resprouting from epicormic buds (Fig. 1d). In this dry forest in Guadalupe, Juniperus deppeana is abundant; in addition, two other conifers relatively rare in Texas are also common: Pinus ponderosa and Pseudotsuga menziesii (Douglas fir); many of the large individuals of the latter species were dead from a recent drought previous to the fire. The forest also included some oaks, both tree and shrub oak species, and an understory with grasses, Agave and Dasylirion species.

 

Figure 1. Photos of Juniperus deppeana (alligator juniper). a) A very large juniper with fire scars from surface fires (and Dylan Schwilk, Texas Tech University, in front of it). b) Detail of the bark. c) Basal stem excavated to show that postfire resprouts originates from a below-ground bud bank, a lignotuber. d) Postfire epicormic resprouting. Photos a) and b) from Davis Mountains, c) and d) from Guadalupe Mountains (1.5 years after a fire), Trans-Pecos region, Texas, November 2017.

 

References

[1] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology 217: 661-676. [doi | pdf | suppl.]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22(12): xx-xx. [doi | pdf]

More on: epicormic resprouting | lignotubers

 

Postfire epicormic resprouting

September 22nd, 2017 No comments

Many plants resprout from basal buds after disturbance, and this is common in shrublands subjected to high-intensity fires [1]. However, resprouting after fire from epicormic (stem) buds is globally far less common. In a recent paper we review the ecology and evolution of this mechanism [2]. Many plants can generate epicormic shoots after light disturbances (e.g., browsing, drought, low intensity fires, insect defoliation, strong winds), but this does not mean they generally resprout epicormically after fire, as the heat of a fire may kill epicormic buds if they are not well protected (e.g., by a thick bark). The most well-known examples of epicormic resprouting are many species of eucalypts (Fig. 1A below), the cork oak (Quercus suber [3], Fig. 1B below), and Pinus canariensis ([4], Fig. 1C, D below). There are other pines and oaks that also resprout epicormically, and many species from savannas, especially those from the Brazilian savannas (cerrado) where many trees have a thick corky bark [5].

Epicormic resprouting has appeared in different lineages and on different continents and thus it is an example of convergent evolution in fire-prone ecosystems. It is an adaptation to a regime of frequent fires that affect tree crowns. It has probably been favoured where productivity is sufficient to maintain an arborescent growth form, fire intensity is sufficient to defoliate the tree canopy crown, and fire frequency is high (in conifers, too high for serotiny to be reliable) [2]. Given the high resilience of forest and woodlands dominated by epicormic resprouters, these species are good candidates for reforestation projects in fire-prone ecosystems [3].

Figure: Examples of postfire epicormic resprouting after a crown fire from very different lineages: (A) Eucalyptus diversicolor 18 months after fire in Western Australia. (B) Quercus suber woodland 1.5 years postfire in southern Portugal. (C) Pinus canariensis woodland a few years after fire; (D) epicormic resprouts of P. canariensis 3 months postfire. Photos by G. Wardell-Johnson (A); F.X. Catry (B) and J.G. Pausas (C, D), from [2].

References
[1] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytologist 209: 945-954. [doi | wiley | pdf | Notes S1-S4]

[2] Pausas J.G. & Keeley J.E. 2017. Epicormic resprouting in fire-prone ecosystems. Trends in Plant Science 22: xx-xx. [doi | pdf]

[3] Aronson J., Pereira J.S., Pausas J.G. (eds). 2009. Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration. Island Press, Washington DC. 315 pp. [The book]

[4] Pinus canariensis, jgpausas.blogs.uv.es/2017/05/07

[5] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species. Journal of Ecology 101 (5): 1265-1272. [doi | pdf | suppl.]

More information on: epicormic resprouting | cork oak | pines

Incendios Chile 2017: restauración y regeneración

September 17th, 2017 No comments

Los incendios del verano 2016/2017 en Chile central afectaron alrededor de unas 600,000 ha [1]. Ahora, y como es natural, la sociedad demanda la restauración urgente de los ecosistemas nativos afectados (>60% de la zona afectada fueron plantaciones forestales [1,2]). La restauración ecológica debe estar basada en el conocimiento, y no se debe realizar de manera generalizada y arbitraria. Una restauración inapropiada es un gasto económico innecesario y a veces incluso perjudicial para el ecosistema; por ejemplo, realizar plantaciones con maquinaria pesada en un ecosistema donde muchas plantas rebrotan después del incendio puede ser contraproducente, ya que puede limitar la regeneración natural. Por lo tanto, las acciones de restauración ecológica requieren de un diagnóstico del terreno previo [3] en el que se evalúe el potencial de erosión del suelo, el potencial de regeneración natural, y la potencial pérdida de especies (incluyendo los efectos de posibles especies invasoras posincendio). Las acciones de restauración deben ser específicas para cada una de las zonas donde se detecten estos problemas dentro del perímetro incendiado. Probablemente no se requerirá restauración alguna, aunque si un control del pastoreo, en aquellos sectores en los que no haya peligro de pérdida de suelo y la regeneración de la vegetación y de la mayoría de especies no esté comprometida. Se requieren actuaciones urgentes en zonas con pérdida potencial de suelo. Y en zonas sin riesgo de erosión, pero con pérdida de especies, se requieren acciones restaurativas a medio-largo plazo (por ejemplo, plantaciones con especies nativas).

A inicios de septiembre de 2017 (6–7 meses después de los incendios) muchas de las especies del matorral esclerófilo afectado por los incendios estaban rebrotando (fotos abajo); algunas otras estaban germinando (p.e., el tevo), aunque la mayoría de germinaciones observadas eran plantas herbáceas. También se observaron pies de especies arbustivas que no habían rebrotado (y que no se pudo determinar la especie), aunque no se puede asegurar que no lo hagan en los próximos meses. Sería interesante saber si en los sectores quemados hay especies que no rebrotan ni germinan después del incendio, pues las poblaciones de estas especies si habrían sido gravemente perjudicas por el fuego, y serían las especies a considerar en una restauración ecológica de la zona.


Fotos: Ejemplos de especies que estaban rebrotando a inicios de septiembre (7 meses después de los incendios): A: Tevo (Trevoa trinervis); B: Litre (Lithraea caustica); C: Quillaia (Quillaja saponaria); D: Bollén (Kageneckia oblonga); E: Mitique (Podanthus mitiqui); F: Patagua (Crinodendron patagua); G: Berberis sp.; H: Boldo (Peumus boldus).

Referencias
[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10/
[2] Chile 2017 fires: fire-prone forest plantations, jgpausas.blogs.uv.es/2017/09/16/
[3] Investigador aborda desafíos de la restauración ecológica tras los incendios en Chile; www.lignum.cl/2017/09/06/

Más información sobre: incendios en Chile | rebrote |

 

Pinus canariensis

May 7th, 2017 No comments

The last post was about Pinus brutia [1] from the Eastern Mediterranean basin. Another pine of the mediterranean group (Pinaster group) is Pinus canariensis, endemic of Canary Islands, in the north west of Africa (in the Atlantic). P. canariensis have a thick bark and resprouts vigorously from stem buds (epicormic resprouting) after crown fires. In addition, it produce serotinous cones, a clear adaptation to recruit after fire [2,3]. Very few other trees have strong adaptations to both survival and regeneration postfire; P. canariensis is among the best fire-adapted trees in the world, likely to survive very different fire regimes.

Pictures of Pinus canariensis (by JG Pausas except mid-right from NASA).
· Top-left: 5 years after a crown-fire (La Palma, Canary Is.).
· Mid-left: plantation 2 years after fire (Vall d’Ebo, Alicante, eastern Spain; planted in the 50s).
· Bottom-left: Contrasted response of Pinus halepensis (left; fire-killed serotinous pine) and P. canariensis (right, resprouting) two years after fire (Alicante, eastern Spain).
· Top-, bottom-right: epicormic resprouts 3 months after fire (Tenerife, Canary Is.).
· Mid-right: a fire plume from a wildfire in La Palma (Canary Is.).

References
[1] Pinus brutia, jgpausas.blogs.uv.es, 19 Apr 2017

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411. [doi | sciencedirect | trends | pdf | For managers]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

 

Postfire resprouting of Chamaerops humilis

March 18th, 2016 No comments

“A few, but only a few species of palms, are, like our Coniferae, Quercineae, and Betulineae, social plants : such are the Mauritia flexuosa, and two species of Chamaerops, one of which, the Chamaerops humilis, occupies extensive tracts of the ground near the Mouth of Ebro and in Valencia …” — Alexander von Humboldt (1848)

Chamaerops humilis (Mediterranean dwarf palm) is the only native palm in continental Europe, and the northernmost naturally occurring palm in the world. It is native to the western Mediterranean Basin, occurring along the Mediterranean cost of Spain (as mentioned by Humboldt), Portugal, France, Italy, Malta, Morocco, Algeria, and Tunisia. The other palm occurring in the Mediterranean Basin is Phoenix theophrasti, a rare palm growing in the Crete island and in the southern Turkey [MedTrees].

Humboldt probably did not know that Chamaerops humilis resprouts very quick after fire (at that time fire was not considered as part of the natural processes). The resprouting of this species does not necessary come from new dormant buds (as in most typical resprouters) but from the normal apical buds protected from the fire by the leaf bases in the stem.The first resprouting leaves often show the typical burned-brown-green pattern of the photo below. This is because in palms (and in all monocots), the meristem is at the base of the leaves (more protected), and thus even burned leaves can still grow from the base and showing the upper part burned. In addition, C. humilis can generate basal suckers from an underground rhizome. C. humilis often flowers very quickly after fire, together with the first leaves (upper photo). Overall it is very resilient to recurrent fires.

Chamaerops-humilis
Chamaerops humilis (one of the few ‘social palms’ following Humboldt) 2-3 months postfire in the Valencia region (eastern Spain; photos: JG Pausas)

References

Humboldt, A. von (1848). Aspects of nature (original title: Ansichten der Natur, 3rd ed).

 

Olive trees resprouting

February 22nd, 2016 No comments

The typical image on a cultivated olive tree (Olea europaea) is a short squat tree with a thick gnarled trunk. Below are some olive trees with a slightly different shape, after being burned twice in different wildfires (1994 and 7/2015) in Montán (Castelló, eastern Spain). Before 1994 these trees were single-stemmed with the typical thick trunk; they were planted long ago for olive production. The 1994 fire killed the main stem and the tree produced many resprout from the base, around the trunk (it became multi-stemmed). In 2015 in burned again killing those 21 year-old resprouts and producing many new ones (the green ones in the pictures, 7 month-old resprouts). The 2015 fire also consumed the main stem that had died in the 1994 fire, including the base of the stem, and thus it produced a hole in the middle of the tree (second picture). This is quite common.

Olea resprouting 1
Olea resprouting 2
Photos: Olive trees (Olea europaea) resprouting after two fires (1994, 7/2015; JG Pausas 2/2016).

More on resprouting: Lignotubers | Resprouting at the global scaleEvolutionary ecology of resprouting and seedingPhysiological differences between resprouters and seedersTo resprout or not to resprout | Differences between resprouters and non-resprouters | Fire, drought, resprouting: leaf and root traits |

 

Lignotubers

November 17th, 2015 1 comment

Lignotubers are swollen woody structures located at the root-shoot transition zone of some plants; they contain numerous dormant buds and starch reserves [1]. They are ontogenetically programmed, that is, they are not the product of repeated disturbances; and thus they can be observed at very early stages of the plant development (other types of basal burls may be a response to multiple disturbances). Lignotubers enables the plant to resprout prolifically after severe disturbances that remove the aboveground biomass, thus they are considered adaptive in fire-prone ecosystems [2]. Lignotubers are not well-known in many floras because they are often below-ground (i.e., detected only after excavation) and because they are often confused by other non-ontogenetically determined basal burls; thus some reports of lignotubers in the literature are mistakes. In a recent review [1] we provide examples of species with a clear evidence of lignotubers in the Mediterranean basin, together with detailed morphological and anatomical description of lignotubers in saplings. The species with lignotuebers in the Mediterranean basin include many Erica species (e.g. E. arborea, E. scoparia, E. australis, E. lusitanica, E. multiflora), the two Arbutus species (A. unedo, A. andrachne), Rhododendron ponticum, Viburnum tinus, Phillyera angustifolia, Quercus suber (not obvious macroscopically!), Tetraclinis articulata and Juniperus oxycedrus (but not in all populations!). Please let me know (email address here) if you know of other Mediterranean basin species with lignotubers! Thanks

lignotubers
Figures: Examples of lignotubers for Mediterranean basin species. A Juniperus oxycedrus (resprouting after fire). B Viburnum tinus. C Arbutus unedo. D Quercus suber (not a clear basal swelling). E Olea europaea. F Phillyrea angustifolia (adult), G Phillyrea angustifolia (saplings). In many species (e.g., V. tinus, A. unedo and P. angustifolia) the lignotuber is only evident after excavating the root-shoot transition zone.

References

[1] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology  [doi | pdf | suppl.]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411.  [doi | sciencedirect | pdf | For managers]

 

Resprouting at the global scale

November 2nd, 2015 No comments

Plant resprouting (i.e., the ability to form new shoots after destruction of living tissues from disturbance) is often considered a simple qualitative trait and used in many ecological studies. However, resprouting is a trait that increases fitness under many different disturbance types, occurs in a wide range of environments, is widespread in many lineages, and is morphologically very diverse. In a recent paper we review some of the complexities and misunderstandings of resprouting and highlight that cautions is needed when using resprouting ability to predict vegetation responses across disturbance types and biomes [1]. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the mediterranean biome, there are differences in functional strategies to cope with water deficit between reprouters (dehydration avoiders) and non-resprouters (dehydration tolerators) [1,2]; however, there is little research to unambiguously extrapolate these results to other biomes, and some of the extrapolations seems to be incorrect. In addition, resprouting in the mediterranean biome tends to be binary, that is, species are either resprouters or non-resprouters [3], and intermediate cases are evolutionary unstable [4]; however this is not necessary true in other biomes (e.g., in the tropics). Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration of not only resprouting but also other relevant traits (e.g., seeding, bark thickness) and the different correlations among traits observed in different biomes [5]; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome, like crown-fire mediterranean ecosystems, can guide research in other ecosystems but should not be extrapolated at the global scale.

 

Cistus-Quercus

Fig: Fire allows the coexistence of species with very different strategies: Cistus albidus seedling (left) and Quercus coccifera resprout (right) 10 months after a high intensity fire in eastern Spain (Cortes de Pallás fire, 2012, Valencia). Cistus albidus  is a drought semi-deciduous nonresprouter (obligate postfire seeder ) with a physiological drought-tolerant behavior; Quercus coccifera  is an sclerophyllous (evergreen) obligate resprouter with drought-avoiding traits [2].

References
[1] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytologist 209:945-954. [doi | pdf] — New paper!

[2] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201: 1277-1288. [doi | pdf ]

[3] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdf | esa | doi]

[4] Pausas J.G. & Keeley J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65. [doi | wiley | pdf]

[5] Pausas, J.G. 2015. Bark thickness and fire regime. Functional Ecology 29:317-327. [doi | pdf | suppl.]

 

Odena fire: 55 days postfire

October 17th, 2015 No comments

The 27th of July a wildfire in Òdena (Anoia, central Catalonia, NE Spain) burned ca. 1200 ha, mainly of Pinus halepensis forest [1]. Here some details 55 days after the fire:

Top: limit of the fire, with the Montserrat mountains in the background. Middle: resprouting of understory plants; Arbutus unedo in the right. Bottom left: concentration of pine nuts around an ant nest. Bottom right: Genista scorpius resprouting. Photos by J. Garcia-Pausas (top, bottom right), A. Mazcuñan (bottom left), JG Pausas (middle).

[1] Odena fire: first visitors, jgpausas.blogs.uv.es 10-08-2015

Fire adaptations in Mediterranean Basin plants

September 7th, 2015 No comments

Few days ago a botanist colleague ask me whether there were some fire adaptations in the plants of the Mediterranean Basin, similar to those reported in other mediterraenan-climate regions. So I realised that researchers working on other topics may not be aware of the recent advances in this area. Here is my brief answer, i.e., some examples of species growing in Spain that show fire adaptations; this is by no means an exhaustive list, but a few examples of common species for illustrative purpose. You can find a description of these adaptations and further examples elsewhere [1, 2, 3, 4]. It is also important to note that plants are not adapted to fire per se, but to specific fire regimes, and thus some adaptations my provide persistence to some fire regimes but not to all [1]. That is, species that exhibit traits that are adaptive under a particular fire regime can be threatened when that regime changes.

  • Serotiny (canopy seed storage): Pinus halepensis, Pinus pinaster, with variability in serotiny driven by different fire regimes [5, 6]
  • Fire-stimulated germination: There are examples of heat-stimulated germination, like many Cistaceae (e.g., Cistus, Fumana [7, 8]) and many Fabaceae (e.g., Ulex parviflorus, Anthyllis cytisoides [7, 8]), as well as examples of smoke-stimulated germination like many Lamiaceae (e.g., Rosmarinus officinalis, Lavandula latifolia [7]) or Coris monspeliensis (Primulaceae [7]). There are also examples of species with smoke-stimulated seedling growth (Lavandula latifolia [7])
  • Resprouting from lignotubers: Arbutus unedo, Phillyrea angustifolia, Juniperus oxycedrus, many Erica species (e.g., E. multiflora, E. arborea, E. scoparia, E. australis) [4, 17]
  • Epicormic resprouting: Quercus suber [9, 10], Pinus canariensis [4]
  • Fire-stimulated flowering: Some monocots like species of Asphodelus, Iris, Narcissus [11, 12]
  • Enhanced flammability: Ulex parviflorus shows variability of flammability driven by different fire regimes [13] and under genetic control [14]. Many Lamiaceae species have volatile organic compounds that enhance flammability (e.g., Rosmarinus officinalis [16]).
  • Thick bark and self-pruning (in understory fires): Pinus nigra [3,15]

 

fireadaptations2

References

[1] Keeley et al. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406-411. [doi | pdf]

[2] Keeley et al. 2012. Fire in Mediterranean Ecosystems. Cambridge University Press. [book]

[3] Pausas JG. 2012. Incendios forestales. Catarata-CSIC. [book]

[4] Paula et al. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420-1420. [doi | pdf | BROT database]

[5] Hernández-Serrano et al. 2013. Fire structures pine serotiny at different scales. Am J Bot 100:2349-2356. [doi | pdf]

[6] Hernández-Serrano et al. 2014. Heritability and quantitative genetic divergence of serotiny, a fire persistence plant trait. Ann Bot 114:571-577. [doi | pdf]

[7] Moreira et al. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627-635. [doi | pdf]

[8] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[9] Pausas JG. 1997. Resprouting of Quercus suber in NE Spain after fire. J Veget Sci 8:703-706. [doi | pdf]

[10] Catry et al. 2012. Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7:e39810. [doi | pdf ]

[11] Postfire flowering: Narcissusjgpausas.blogs.uv.es 2 May 2015

[12] Postfire blooming of Asphodelous, jgpausas.blogs.uv.es 5 Apr 2014

[13] Pausas et al. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol 193:18-23. [doi | pdf]

[14] Moreira et al. 2014. Genetic component of flammability variation in a Mediterranean shrub. Mol Ecol 23:1213-1223. [doi | pdf]

[15] He et al. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 194:751-759. [doi | pdf | picture]

[16] Flammable organic compounds: Rosmarinus officinalis, jgpausas.blogs.uv.es 2-Oct-2015

[17] Paula et al. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology [doi | pdf | suppl. | blog]

 

Ecology and evolution in fire-prone ecosystems

February 28th, 2015 2 comments

During the last years I’ve been working in many topics related to fire ecology and plant evolution in ecosystems subject to recurrent fires (mainly mediterranean and savanna ecosystems). Because I believe knowledge should be spread around easily, I make my results available to the public in my web page (see publications list) and in this blog. However, having the cumulative list of paper published each year is not very convenient for people searching for a specific topic. For this reason, I’m rearranging most of my articles by topics as follows:

1. Fire history
2. Fire regime: climate & fuel
3. Fire traits (resprouting, postfire germination, serotiny, bark thickness, flammability, data & methods)
4. Fire & plant strategies (in Mediterranean ecosystems, in pines, in savannas, community assembly)
5. Fire & evolution
6. Some fire-adapted species (Pinus halepensis, Quercus suber, Ulex parviflorus)
7. Fire & vegetation modelling
8. Plant-animal interactions
9. Restoration & conservation

See: fire-ecology-evolution.html

Some papers may be repeated if they clearly fit in more than one topic; some papers, mainly old ones, do not fit well in any of these topics and have not been included (at least at the moment), they still can be found in the section of publications sorted by year. I’m still working on this rearrangement, so some modifications are possible; and any comment is welcome.
I hope this is useful for somebody!

Publications: by year | by topic | books

 

Evolutionary ecology of resprouting and seeding

July 15th, 2014 No comments

There are two broad mechanisms by which plant populations persist under recurrent fires: resprouting from surviving tissues, and seedling recruitment [1]. Species that live in fire-prone ecosystems can have one of these mechanisms or both [1]. In a recent review paper [2], we propose a model suggesting that changes in evolutionary pressures that modify adult (P) and juvenile (C) survival in postfire conditions (Fig. 1 below) determine the long-term success of each of the two regeneration mechanisms, and thus the postfire regeneration strategy: obligate resprouters, facultative species and obligate seeders (Fig. 2). Specifically we propose the following three hypotheses: 1) resprouting appeared early in plant evolution as a response to disturbance, and fire was an important driver in many lineages; 2) postfire seeding evolved under conditions where fires were predictable within the life span of the dominant plants and created conditions unfavorable for resprouting; and 3) the intensification of conditions favoring juvenile survival (C) and adult mortality (P) drove the loss of resprouting ability with the consequence of obligate-seeding species becoming entirely dependent on fire to complete their life cycle, with one generation per fire interval (monopyric life cyle). This approach provides a framework for understanding temporal and spatial variation in resprouting and seeding under crown-fire regimes. It accounts for patterns of coexistence and environmental changes that contribute to the evolution of seeding from resprouting ancestors. In this review, we also provide definitions and details of the main concepts used in evolutionary fire ecology: postfire regeneration traits, postfire strategies, life cycle in relation to fire, fire regimes (Box 1), costs of resprouting (Box 2), postfire seeding mechanisms (Box 3), and the possible evolutionary transitions (Box 4).

 

Fig2_sm
Fig. 1 : Main factors affecting adult and offspring seedling survival (P and C, respectively), and thus the P/C ratio, in fire-prone ecosystems (from Pausas & Keeley 2014 [2]).

 

Fig3_sm

Fig. 2: The changes in the probability of resprouting along an adult-to-offspring survival (P/C) gradient are not linear but show two turning points related to the acquisition of key innovations: the capacity to store a fire-resistant seed bank (postfire seeding), and the loss of resprouting capacity. Changes in P/C ratio may be produced by different drivers (Fig. 1) which drove the rise of innovations during evolution, e.g., during the increasing aridity from the Tertiary to the Quaternary (from Pausas & Keeley 2014 [2]).

 

Refecences

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [doi | pdf | esa | jstor]

[2] Pausas J.G. & Keeley J.E. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65 [doi | wiley | pdf]

 

Physiological differences between resprouters and seeders

November 9th, 2013 No comments

The ability to resprout and to recruit after fire are two extremely important traits for the persistence in fire-prone ecosystems [1,2], and they define three life histories: obligate resprouters, obligate seeders (non-resprouters), and facultative seeders. After a fire, obligate seeders die and recruit profusely from the seeds stored in the seed bank [3-5]. In contrast, resprouters survive after fire and their above-ground tissues regenerate from protected (often below-ground) buds by using stored carbohydrates [6]. Facultative seeders not only recruit profusely after fire, but are also able to resprout. In fact, seeders and resprouters have different regeneration niches: seedling regeneration of obligate resprouters is not linked to fire, and they recruit during the inter-fire period under sheltered conditions (i.e., under vegetation cover), while seedling regeneration of seeders occurs in open postfire environments. Given the marked difference in water availability between microsites under vegetation and microsites open to the sun under Mediterranean conditions, seedlings of resprouters and seeders are subjected to different water-stress conditions, and thus they are expected to have different physiological attributes. Despite these differences, resprouters and seeders co-exist, are often well-mixed on local and landscape scales [7,8], and represent the two main types of post-fire regeneration strategies in Mediterranean ecosystems [2].

A recent study demonstrates marked differences in physiological attributes between seedlings of seeders and resprouters [9]: Seeders show a range of physiological traits that better deal with water-limited and highly variable conditions (e.g., higher resistance to xylem cavitation, earlier stomatal closure with drought, higher leaf dehydration tolerance), but they are also capable of taking full advantage of periods with high water availability (greater efficiency in conducting water through the xylem to to sustain high gas exchange rates when water is available). Conversely, resprouter species are adapted to more stable water availability conditions, favoured by their deeper root system, but they also display traits that help them resist water shortages during long summers.

Previous studies already showed marked differences between seeders and resprouters in a range of attributes: resprouters tend to exhibit a deeper root-system, while seedling root structure of seeders are more efficient in exploring the upper soil layer [10]. Leaves of seeders show higher water use efficiency (WUE) and higher leaf mass per area (LMA; i.e., higher sclerophylly, lower SLA) [11]. Seeds of seeder species are more tolerant to heat shocks and have greater heat-stimulated germination [3]. All these differences support the idea that they are distinct syndromes with different functioning characteristics at the whole plant level and suggest that they undertook different evolutionary pathways [12].

Figure: Coexistence of resprouters (R+) and seeders (R-) in postfire conditions near Valencia, Spain. (Foto: A. Vilagrosa).

 

References:

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [jstor |[pdf | Ecological Archives E085-029]

[2] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]

[3] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [doi | pdf]

[4] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [doi | pdf | blog]

[5] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(12): e51523. [doi | plos | pdf | blog]

[6] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121: 1577-1584. [doi | pdf]

[7] Verdú M, & Pausas JG 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities Journal of Ecology 95 (6), 1316-323 [doi | pdf]

[8] Ojeda, F., Pausas, J.G., Verdú, M. 2010. Soil shapes community structure through fire. Oecologia 163:729-735. [doi | pdf | blog]

[9] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201 : xx-xx [doi | pdf | suppl.] – NEW

[10] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331. [doi | pdf | blog]

[11] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [doi | pdf | blog]

[12] Verdú M. & Pausas J.G. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. Evolution 67: 1756-1766. [doi | pdf | blog]

 

Fire-stimulated flowering

May 25th, 2013 No comments

Some plant species flower profusely and quickly after fire (fire-stimulated flowering). Compared with resprouting or postfire seeding, this trait is relatively unknown outside of South Africa and Australia [1, 2]. It is considered one of the adaptations of some resprouting species to live in recurrently burn environments. There are some of these species that rarely flower without a fire (obligate postfire flowering) while others can flower in the absence of fire but they produce more flowers after it (facultative postfire flowering). One example I had the chance to observe recently in Central America is Bulbostylis paradoxa (Cyperaceae; Figure below); it is a very flammable plant that grow in savannas and dry forest of Central/South America and the Caribbean. Local foresters told me that they have never seen this species flowering in absence of fire, and that they start flowering next day after the fire.


Figure: Bulbostylis paradoxa (Cyperaceae) one month after a fire in Santa Rosa National Park, Costa Rica (fotos: J.G. Pausas, May 2013).

References:
[1] Bytebier B., Antonelli A., Bellstedt D.U., Linder H. P. 2011. Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc. R. Soc. B, 278: 188-195.

[2] Lamont B.B., Downes K.S. 2011. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol. 212: 2111-2125.

 

Bark harvesting and Cork oak vulnerability to fire

July 11th, 2012 No comments

Cork oak (Quercus suber) is a strong fire-resistant tree species thank to is very thick and insulating corky bark [1-4]. In fact it is the only European tree with the capacity to resprout from epicormic buds in the canopy after an intense crown-fire [1]. However, the bark of the cork oak is periodically harvested for cork production (mainly for bottle tops but also for other uses, [2]) and thus bark harvesting increases the vulnerability of the tree to fire. In a recent paper we quantified the response of cork oak (tree mortality, stem mortality, and crown recovery) after fire [5]. The results showed that fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a long period. Exploited trees were also more likely to be top-killed than never-debarked trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. All these aspects need to be considered when managing cork oak woodlands specially nowadays that fire activity is increased [6]. Increasing the length of the cork harvesting cycle would increase the time during which the trees have a thicker bark and are better protected against fire injury. Since cork is the main economical income from these forests, stopping bark exploitation might be unrealistic in most cases. However, in fire-prone areas where conservation and tourism are the main objectives, stopping bark explotation would likely be the most effective option to increase ecosystem resilience to fire. The valorisation of many other services provided by cork oak forests [7] could create economic incentives to decrease the bark-exploitation dependency of these systems in the future.


Foto: Cork oak  resprouting from epicormic buds (By F. Catry)

References

[1] Pausas, J.G. 1997. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 8: 703-706. [doi | pdf]

[2] Aronson, J., J. S. Pereira, and J. G. Pausas (eds). 2009. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration. Island Press, Washington, DC. [web of the book]

[3] Pausas J.G. 2009. Convergent evolution. jgpausas.blogs.uv.es, 8/Nov/2009. [link]

[4] Pausas J.G. 2011. Bark thickness: a world record? jgpausas.blogs.uv.es, 3/Jan/201. [link]

[5] Catry F., Moreira F., Pausas J.G., Fernandes P.M., Rego F., Cardillo E. & Curt T. 2012. Cork Oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7: e39810. [doi | pdf ]

[6] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

[7] Bugalho M.N., Caldeira M.C., Pereira J.S., Aronson J., & Pausas J.G. 2011. Mediterranean Cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9: 278-286. [doi | pdf | blog]

 

New Book: Fire in Mediterranean Ecosystems

March 13th, 2012 No comments

Finally the new fire ecology book by Keeley et al. (2012) has been published:



For more information, table of contents, etc, see here.

Cambridge UP (ukusaau), Amazon (ukusajp), eBooks

To resprout or not to resprout

January 25th, 2012 No comments

Resprouting is a mechanism that allows individual plants to persist in disturbance-prone ecosystems. It is often considered a binary trait, defining species as resprouters or non-resprouters [1]. Although this dichotomous classification accounts for a high proportion of the interspecific variability in resprouting, it does not account for the intraspecific variability, as not all individuals of resprouting species successfully resprout [2], even if they are subject to a similar disturbance. In a recent paper, we proposed a conceptual model that disaggregates the process of resprouting into three sequential steps: initial ability to resprout, resprouting vigour and post-resprouting survival [3]. Intraspecific variability in resprouting supported the importance of: a) the pre-disturbance state of the plant (i.e. plant size and stored resources) on the initial ability to resprout and on the resprouting vigour, and b) the initial post-disturbance capacity to acquire resources (i.e., resprouting vigour) on the post-resprouting survival. The proposed three-step model of resprouting provides a mechanistic description of the factors driving intraspecific variability in resprouting.

Figure: Probability of initiating resprouting (as a function of starch concentration in roots), resprouting vigor (as a function of pre-disturbance plant size), and survival (as a function of the resprouting vigor), for Linum suffruticosum [see pictures] in the Valencia (eastern Spain). From Moreira et al. (2012) [2]

References

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [jstor | pdf]

[2] Catry F.X., Rego F., Moreira F., Fernandes F.M., Pausas J.G. 2010. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manage. 206: 1184-1192. [doi | pdf | post]

[3] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos [doipdf]

Differences between resprouters and non-resprouters

October 1st, 2011 No comments

Resprouting is a very important process in plants living in disturbance-prone ecosystems, and the December issue of the journal Plant Ecology is going to be dedicated to this topic (Ecology of plant resprouting in fire-prone ecosystems). During the recent years, and starting from the PERSIST project, we have been comparing functional traits between resprouters and non-resprouters in Mediterranean fire-prone ecosystems, and the last comparison (physiological traits [5]), is included in this special issue. Resprouters and non-resprouters are two plant syndromes in Mediterranean ecosystems that also differ in their evolutionary history [1]. Resprouters tend to exhibit a deeper root-system than non-resprouters that inverse less resources on roots. So one could think that resprouters are better adapted to drought. However, both resprouters and non resprouters coexist, and non-resprouters counteract their lower root allocation by different traits that confer higher drought resistance [2]. Non-resprouters have higher drought resistance at leave level because they have higher water use efficiency (WUE) and higher leaf mass per area (LMA; i.e., higher sclerophylly, lower SLA) [3]. The seedling root structure of non-resprouters also allows them to more efficiently explore the upper soil layer [4]. A recent paper also shows that, when water is non-limiting, non-resprouters showed a better performance of leaf gas exchange traits (higher assimilation, stomatal conductance and transpiration) than resprouters [5]; that is non-resprouters have higher efficiency in resource capture, and thus a better capacity to take advantage of water when it is freely available. In addition, resprouters and non-resprouters also differ in their post-fire germination, as non-resprouters tend to have a greater capacity to both (i) persist after fire by means of recruiting (greater heat-tolerance) and (ii) increase their population after fire (greater heat-stimulated germination), than resprouters [4]. All these results suggest that resprouters and non-resprouters are two contrasted syndromes or functional types in the Mediterranean Basin [6].

Figure: Arbutus unedo resprouting after a fire.

References:

[1] Pausas J.G. & Verdú M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: A phylogenetic approach. Oikos 109: 196-202. [pdf |doi]

[2] Pausas J.G. 2010. Fire, drought, resprouting: leaf and root traits. URL: jgpausas.blogs.uv.es, 22/Oct/2010.

[3] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [pdf | [doi]

[4] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331. [doipdfblog]

[5] Hernández E.I., Pausas J.G. & Vilagrosa A. 2011. Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecology 212:1959-1966 [doi| pdf]

[4] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [pdf | doi]

[6] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdfjstor] [Ecological Archives E085-029]

Fire, drought, resprouting: leaf and root traits

October 22nd, 2010 No comments

Drought and fire are prevalent disturbances in Mediterranean ecosystems. Plant species able to regrow after severe disturbances (i.e. resprouter life history) have higher allocation to roots and higher water potential during the dry season than coexisting non-resprouting species. However, non-resprouters have higher survival rate after summer drought. We expect that, to counteract their shallow-rooting systems and to maximize seedling survival, non-resprouters have traits that confer higher water-use efficiency and higher efficiency in soil resource acquisition than resprouters.

Some time ago we tested this prediction in relation to leaf traits [1] and found that non-resprouters have higher leaf mass per area (LMA; i.e. lower specific leaf area, SLA), leaf dry matter content (LDMC), area-based leaf nitrogen content (LNCa) and integrated water-use efficiency (δ13C) than resprouters, suggesting that they have higher potential for structural resistance to drought and higher water-use efficiency than resprouters.

In a recent paper we have now tested the prediction for root traits in seedlings [2]. We found that non-resprouters have higher specific root length (SRL) and longer, thinner and more branched lateral roots, especially in the upper soil layers. The external links (i.e. the most absorptive root region) are also more abundant, longer, thinner and with higher SVR for non-resprouters. Thus seedling root structure of non-resprouters species allows them to explore more efficiently the upper soil layer, whereas seedling roots of resprouters will permit both carbon storage and deep soil penetration.

Whereas resprouters tend to maximize the surface and the efficiency of the organs for carbon uptake to ensure carbohydrate storage for resprouting (eg, higher SLA), non-resprouters maximize the root surface (eg, higher SRL), since their survival and growth may be limited by soil resources.

[1] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [doi | pdf]

[2] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331 [doi | pdf]

Specific Root Length

Relationship between average root diameter and specific root length (SRL; log-scale) for resprouting (R+, closed symbols) and non-resprouting (R-, open symbols) species. Intraspecific variability is indicated by segments emerging from each symbol. From Paula & Pausas (Oecologia [2]).