Archive

Posts Tagged ‘savanna’

Fire-released seed dormancy

April 8th, 2022 No comments

Many plants concentrate their seedling recruitment after the passage of a fire. This is because postfire conditions are especially optimal for germination and establishment of many species as fires create extensive vegetation gaps that have high resource availability, minimal competition, and low pathogen load. Thus we propose that fireprone ecosystems create ideal conditions for the selection of seed dormancy as fire provides a mechanism for dormancy release and optimal conditions for germination [1]. We compiled data from a wide range of fire-related germination experiments for species in different ecosystems across the globe and identified four dormancy syndromes: heat-released (physical) dormancy, smoke-released (physiological) dormancy, non-fire-released dormancy, and non-dormancy. In fireprone ecosystems, fire, in the form of heat and/or chemical by-products (collectively termed ‘smoke’), are the predominant stimuli for dormancy release and subsequent germination, with climate (cold or warm stratification) and light sometimes playing important secondary roles. Fire (heat or smoke)-released dormancy is best expressed where woody vegetation is dense and fires are intense, i.e. in crown-fire ecosystems (e.g., mediterranean-type ecosystems). In grassy fireprone ecosystems (e.g. savannas), where fires are less intense but more frequent, seed dormancy is less common and dormancy release is often not directly related to fire (non-fire-released dormancy). Fire-released dormancy is rare to absent in arid ecosystems and rainforests. Heat-released dormancy can be traced back to fireprone floras in the ‘fiery’ mid-Cretaceous, followed by smoke-released dormancy, with loss of fire-related dormancy among recent events associated with the advent of open savannas and non-fireprone habitats. Anthropogenic influences are now modifying dormancy-release mechanisms, usually decreasing the role of fire. We conclude that contrasting fire regimes are a key driver of the evolution and maintenance of diverse seed dormancy types in many of the world’s natural ecosystems.

Fig. 1. Percentage germination of 68 populations or species subjected to simulated fire- (y axis) and summer-type (warm stratification) temperature (x-axis) (C., Cistus; F., Fumana; U., Ulex; A., Acacia; M., Mimosa). Points above the dotted line (1:1) have higher germination levels after fire heat than after summer heat. Note that all points at or below the line are for species in savannas [S], while the others are from mediterranean shrublands and other crown-fire ecosystems. That is, in crown-fire ecosystems, fire is the most likely selective agent for dormancy. From [1].
Fig. 2. Dated phylogeny for major clades in the New and Old World Cistaceae together with closely related ancestral clades. Pie charts at the tips show the fraction of species that occur in crown-fire ecosystems (red), surface-fire ecosystems (orange), those with physical dormancy – hard seeds (green), and those with heat-released dormancy (blue). Blank sectors mean that the trait is absent. Letters at the tips refer to growth forms in the clade (T, tree; S, shrub or subshrub; H, herb/annual). Black dots indicate the crown age of diversification of the corresponding clade. From [1].

References

[1] Pausas J.G. & Lamont B.B. 2022. Fire-released seed dormancy – a global synthesis. Biological Reviews  [doi | pdf | supp. mat. | data (figshare)]

Megafauna history and plant defense traits

January 10th, 2022 No comments

The role of large herbivores in explaining broad-scale ecological pattern has often been underestimated [1]. Plants have defenses against large herbivores (e.g., spines, high wood density [2]). And many continents had abundant large herbivores (megafauna) that were extinguished in Pleistocene (except in Africa). In a recent paper [3] we asked, to what extent the past distribution of extinct magafauna explains current geographical distribution of plant defense traits in the Neotropics (South & Central America). We fond that a significant proportion of the variance in the distribution of wood density, leaf size, stem spines, and leaf spines are explained by variable related to past megafauna (richness and body mass).

We defined 3 antiherbiomes in South America, that is, regions with characteristic plant defenses, environmental conditions, and Pleistocene megafauna, as follows: Small-Leaves-Thorny (SLT): thorny and small-leaved plants, in arid, cold and nutrient-rich ecosystems, containing numerous extinct and extant large grazers. Intermediate-Leaves-Woody (ILW): intermediate leaf sizes and levels of chemical defenses, and very high wood density, in moist and hot climates, and extremely nutrient-poor soils; and a high extinct megafauna richness, especially in relation to small browsers and mixed-feeders. Broad-Chemically-defended-Leaves (BCL): very large leaves with chemical defenses, mostly associated with moist climates and intermediate fertility soils, with few but large extinct megafauna species, especially browsers. Similar antiherbiomes can be observed in current Africa. These antiherbiomes represent one of the most striking broad-scale anachronisms in ecology.

We estimated that in South America, savannas occupied about 10 millions of Km2 during the Pleistocene, ca. 63% of them were converted to forests (44% to moist forests, 19% to dry forests) after the megafauna extinction (biome shifts [4]), and ca. 37% remains as savanna (stable). This suggests that South America was a savanna-dominated continent, much more similar to Africa than today, and that a large proportion of South American forests are the result of megafauna extinctions.

Overall our results suggest that past (extinct) large herbivores explain an important proportion of the variability of current plant traits and community assemblies.

 

Fig. 1. Left: Distribution of the 3 anti-herbiomes. Right: Hypothesized distribution of savanna during the Pleistocene (coloured areas; based on the distribution of extinct megafauna), that currently are savanna (in yellow), moist forests (dark green) and dry forests (light green). From [3]
Fig. 2. Reconstruction of Pleistocene savanna (ILW antiherbiome) with Taxodon platensis (a mixed feeder) next to the tree Bowdichia virgilioides (sucupira-preto; Fabaceae), and a Notiomastodon in the background. Artist: Júlia d’Oliveira

Fig. 3. Additional reconstructions of the Pleistocene Brazilian savannas from [5]. Artist: Júlia d’Oliveira

 

References

[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]

[2] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad | blog ]

[3] Dantas V., Pausas J.G. 2022. The legacy of Southern American extinct megafauna on plants and biomes. Nature Comm. 13: 129 [doi | pdf | data & codes] – New!

[4] [2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[5] Pansani et al. 2019. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quat Sci Rev, 221, 105864. 

A message from grasses

February 21st, 2021 No comments

This video provides a powerful message from grasses to the world, written and narrated by William Bond: The Untold Story of Grasses.

Grasses created an open sunlit world, rich in plants and animals.

When you support a tree planting project … Stop. Think. Are the trees restoring a forest? Or are they destroying an ancient grassland? What might be lost?

Further readings

  • Bond WJ. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford University Press.
  • Pausas JG. & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | pdf]
  • Pausas JG. & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]
  • Afforestation is not a solution to mitigate CO2 emissions [link]
  • Mythbusting forests, by WJ Bond [link]
  • https://openecosystems.co.za/

Megafauna history shapes plants

April 24th, 2020 No comments

The role of large herbivores in explaining broad-scale ecological pattern has probably been underestimated [1]. For instance, they are important in maintaining many landscapes and biomes across the world [2]. In a recent paper we show that the different history of megafauna abundance and extinctions in different continents has shaped the dominance of many plant traits [3]. Tropical Africa (paelotropics) and tropical South America (neotropics) are a clear example of contrasting megafauna history under similar environmental conditions. By comparing plant traits of woody species in different biomes (savannas and forests) and for the two different continents, we found that continent explain better the differences in plant traits than biome, climate, or soil, and that the differences between continents are consistent with the higher impact of large vertebrates in Africa than in South America. For instance, plants in African savannas tend to be more thorny and to have higher wood density, i.e., traits related to defense against megaherbivores. In contrast, South American savannas (Cerrado) harbor more species with underground bud banks (geoxyles [4]), and thicker protective barks, i.e., traits related to protect from wildfires [4,5].

Megafauna was certainly present in South America before the Holocene overkilling by humans, however, it is unlikely they live in the brazilian savannas (cerrado); their weak and vulnerable stems (low height growth, low wood density, and lack of spines), are unlikely to have evolved in regions with abundant browsers. We hypotheses that megafauna in South America was distributed in: 1) an open version of the current seasonally dry tropical forests (SDTF, e.g., Chaco) as the proportion of thorny species is similar to African savannas (and much higher than the cerrado); and 2) the subtropical grasslands, as they currently need to be maintained by humans due to the missing megaherbivores (landscape anachronism [1]).

Overall our results suggest that variation in plant traits in the tropics is unlikely to be fully understood without considering historical factors, especially the direct and indirect impacts of megafauna. Looking at plants and thinking on their megafauna history may provide novel insights for understanding vegetation patterns across the globe [1].

The effects of megafauna history (left: absence, right: present of megafauna) on plant functional traits of tropical woody species in different biomes (savannas and forests). Arrows between the dominant driver(s) (boxes) and traits (circles) indicate positive (blue) and negative (red) effects. From [3]

References

[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]

[2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[3] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad]

[4] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[5] Pausas JG. 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf]  &  Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.]

Alternative Biome States

January 8th, 2020 No comments

There is growing interest in the application of alternative stable state (ASS) theory to explain major vegetation patterns in tropical ecosystems [1] and beyond [2]. In a recent paper [3] we introduced the theory as applied to the puzzle of non-forested (open) biomes growing in climates that are warm and wet enough to support forests (alternative biome states, ABSs; Fig. 1). Long thought to be the product of deforestation, diverse lines of evidence indicate that many open ecosystems are ancient. They have also been characterized as ‘early successional’ even where they persist for millennia. ABS is an alternative framework to that of climate determinism and succession (Table 1 below) for exploring forest/nonforest mosaics. Within climatic and edaphic constraints, consumers (fire and herbivores) can produce vastly different ecosystems from the climate potential and have done so for millions of years [4]. This framework explains not only tropical forest–savanna landscapes, but also other landscape mosaics across the globe (Fig. 2).

Fig. 1. Generalized feedback processes in fire-prone landscapes where open and closed biomes (e.g., a grassland and forest) are alternative stable states maintained by stabilizing feedbacks, while perturbations generate abrupt transitions among states (destabilizing factors). From: [3].

Fig. 2. Examples of multibiome landscape mosaics where closed forests alternate with open biomes (grasslands) that are maintained by mammal herbivory and fire. From: [3].

Table 1. Comparison of the three main dynamic processes assembling disturbance-prone communities and landscapes: classical (facilitation) succession, autosuccession, and ABS. From: [3].

References

[1] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecol. Lett. 19: 12-19. [doi | wiley | pdf | suppl.]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[3] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. [doi | sciencedirect| pdf]

[4] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

The long shadow of Humboldt

January 15th, 2019 No comments

Behind the paper “Humboldt and the reinvention of nature” [1]. Text simultaneously published here and in JEcologyBlog.com

It all started when I was reading an excellent book by Andrea Wulf entitled The Invention of Nature: Alexander von Humboldt’s New World. The book provides many details about Humboldt’s fascinating life and the wide-ranging influence he had on science and society. When reading the book, you can easily understand the unquestionable role Humboldt played in the history of ecology and biogeography. One of his many contributions to science was to set the basis for explaining how environmental factors affect species distribution; for example, he demonstrated that vegetation systematically varies across the world with climate and showed the ecological similarities between altitude and latitude.
 

Fig. 1. Vegetation of Chimborazo (Ecuador) by Humboldt and Bonpland (1807).

 
A question that came to my mind was not covered by the book; namely, to what extent does Humboldt’s view bias our vision of nature? This is relevant because many classical naturalists and ecologists, such as Henry David Thoreau, Charles Darwin, George Perkins Marsh, John Muir, Rachel Carlson, Frederic E. Clements, and Henry A. Gleason, were all inspired by Humboldt. By spreading a vision, they shaped what is today mainstream ecology and the environmental movement. The current emphasis on the role of climate and soil in many ecological and evolutionary studies, the emphasis on forests as the potential and most important vegetation, and the difficulties many researchers have accepting the ecological and evolutionary role of disturbances at broad scales, suggest that we are still largely viewing nature through the eyes of Humboldt.

After reading the book, I was lucky enough to be in London for a conference and met William Bond in a pub just next to Kew Gardens. We stayed hours talking about many things, mainly fire, grazing, alternative stable states, and all the wonders of ecosystems maintained by disturbances. Our conversation jumped from one country to the other, from one biome to the other, and from one continent to another. And when talking about the overwhelming role that many researchers attribute to the environment when explaining broad temporal and spatial vegetation patterns [2], we glimpsed the long shadow of Humboldt. That conversation in a quiet London pub was the seed of this paper (and of another to come). Talking with William is always enjoyable because of his enthusiasm, experience, and creativity.

Now that we are approaching the 250th anniversary of Humboldt’s birth, it is instructive to evaluate his legacy of climate and soil as primary factors explaining broad vegetation patterns. There is increasing evidence that many open, non-forested ecosystems (savannas, grasslands, and shrublands) cannot be predicted by climate and soil – and are ancient and diverse systems maintained by fire and/or vertebrate herbivory. Paleoecological and phylogenetic studies have shown the key role of fire and grazing at geological time scales (Fig. 2). In this paper [1], we propose moving beyond the legacy of Humboldt by embracing fire and large mammal herbivory as key factors in explaining the ecology and evolution of world vegetation. This implies understanding grasslands, savannas, and shrublands as ancient and diverse ecosystems that require conservation, including the processes that maintain them (grazing and wildfires).
 

Fig. 2. Changes of the drivers related to plant consumers (fire and herbivory), together with the evolution of different vegetation types, and some plant traits (serotiny and thick bark of pines, epicormic resprouting in eucalypts), along the evolutionary history of plants. Upper pointing triangles are peaks of O2 atmospheric concentration and fire activity; lower-pointing triangles are megafauna extinction events, also associated to fire activity peaks. Note that modern fire regimes are very recent, and at this scale they are almost a point. From [1].

 

Fig. 3. Alexander von Humboldt and Aimé Bonpland on the foot of Chimborazo, painting by Friedrich Georg Weitsch (1810)

 
References
[1] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. [doi | jecolblog | pdf]

[2] Pausas J.G. & Lamont B.B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae J. Biogeogr. 45: 1469-1477. [doi | pdf]
 

Flammability and coexistence

March 3rd, 2017 No comments

In the cover of the March issue of the Journal of Ecology (105:2) there is a picture of Palicourea rigida (Rubiaceae), a plant growing in the Brazilian savannas (cerrado). It is an example of a plant that survives in a very flammable environment (grassy savanna) thanks to a set of traits conferring very low flammability, including a very low specific leave area and a thick corky bark. Grasses generates fast fires of low intensity (fast-flammable strategy), and in this environment, having low flammability is adaptive as it increases survival (non-flammable strategy). That is, different (contrasted) flammability strategies allows coexistence. For the definition of the different flammability strategies see [1].

Pausas-2017-JEcol_cover2(photo by J.G. Pausas)

 

[1] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | blog | brief]

 

Homage to Coutinho: fire adaptations in cerrado plants

February 28th, 2017 No comments

Professor Leopoldo (Léo) M. Coutinho (1934–2016; Fig. 1) from the University of Sao Paulo, Brazil, studied fire adaptations in Brazilian savannas (cerrado) during the 1970s, when very few researchers recognized fire as an evolutionary force. One of his important contribution on the cerrado ecology was on fire-stimulated flowering (Fig. 2), but he also studied serotiny, nutrient cycling, fire germination, water balance, among other topics [1,2]. However, his research is little known, partly because he was not part of the dominant Anglo-Saxon culture but also because he was ahead of his time, when fire and evolution were still distant concepts [1].

Coutinho2Figure. 1. Professor L. M. Coutinho in a Brazilian cerrado (photos by A. C. Coutinho)

Fig1_CoutinhoFigure 2: Frequency distribution of the flowering intensity index (from 0 to 4) after fire (shaded; 90 days post-fire) and in control conditions (white) in 47 species (belonging to 20 families) of a cerrado ecosystem (prepared from data in Coutinho 1976). The 31 species with the highest post-fire flowering belong to 17 different families. From [1]

References

[1] Pausas J.G. 2017. Homage to L. M. Coutinho: fire adaptations in cerrado plants. Intern. J. Wildland Fire,  [doi | pdf]

[2] Pivello, V.R. 2016. Professor Leopoldo Magno Coutinho: a visão de uma discípula. Biodiversidade Brasileira, 6(2): 4-5.

 

Scale mismatch in ecology

January 2nd, 2017 No comments

A recent paper suggested that fire-vegetation feedback processes may be unnecessary to explain tree cover patterns in tropical ecosystems and that climate-fire determinism is an alternative possibility [1]. This conclusion was based on the fact that it is possible to reproduce observed broad scale patterns in tropical regions (e.g., a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire-vegetation feedback processes. We argue that this reasoning is misleading because these two mechanisms (feedbacks vs fire-climate control) operate at different spatial and temporal scales [2]. It is not possible to evaluate the role of a process acting at fine scales (e.g., fire-vegetation feedbacks) using a model designed for reproducing regional-scale pattern; i.e., there is a mismatch between the scale of the question and the scale of the approach for addressing the question. While the distribution of forest and savannas are partially determined by climate, the most parsimonious explanation for their environmental overlaps (as alternative states) is the existence of feedback processes [3,4], as has been shown in many ecosystems, not only tropical ones [4]. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire-vegetation feedbacks are complementary processes acting at different spatial and temporal scales [2].
Fig2b
Figure: Fire activity (based on remotely sensed data) for savannas and forests located in the range of environmental conditions where both occurs, for Africa and South America (Afrotropics and Neotropics, respectively). From [2,3].

References
[1] Good, P., Harper, A., Meesters, A., Robertson, E. & Betts, R. (2016) Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? Global Ecol. and Biogeogr. 25, 16-25.

[2] Pausas J.G. & Dantas V.L. 2017. Scale matters: Fire-vegetation feedbacks are needed to explain tropical tree cover at the local sacle. Global Ecol. and Biogeogr. [doiwiley | pdf]

[3] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecology Letters 19: 12-19. [doi | wiley | pdf | suppl | blog]

[4] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.] | blog]

 

Brazil 2016

June 27th, 2016 No comments

Summary of my June 2016 tour:

  • Brasilia: meeting point with S. Paula;  visit to the Jadim Botánico and the Chapada Imperial [photos A, E]
  • Pirenópolos: IAVS 2016; talk: “Plant strategies in fire-prone ecosystems: hidden buds” [photo B]; Pireneus
  • Rio Claro: Univesidade Estadual Paulista (UNESP); meeting with A. Fidelis & students (Luis, Talita, etc.). Visiting the Itirapina experimental fires [photo C]. Talk: “Fire, traits, and biodiversity: a global perspective”.
  • Piracicaba: Universidade de Sao Paulo (USP), meeting with B. Appezzato-da-Glória and collaborators to study underground resprouting structures [photo D]
  • Campinas: Universidade Estadual de Campinas (UNICAMP); meeting with V. Dantas and students (Paulo, André, etc.) [photo F]
  • Sao Paulo: meeting W. Delitti (USP)

brasil2016c
Photos: A (top left):  Susana Paula, Ericaulaceae and myself; B (top right) : my talk in Pirenópolis; C (bottom left): A. Fidelis and her students in front of an ‘underground tree’. D (center): Xylopodium with tuberous roots in Aldama (Appezzato-da-Glória lab); E (middle right): tree with a corky bark in the cerrado of the Jardim Botánico (Brasilia); E (bottom right): Having a drink with Vinicius Dantas in Campinas.

Related posts:

– Brazil 2015, jgpausas.blogs.uv.es 16 Mar 2015

– Fire shapes savanna-forest mosaics in the Brazilian cerrado, jgpausas.blogs.uv.es 14 May 2014

– Afrotropical and neotropical savannas are different, jgpausas.blogs.uv.es 29 Jul 2013

– Fire generates intraspecific trait variability in neotropical savannas, jgpausas.blogs.uv.es 28 Aug 2012

– Disturbance maintains alternative biome states, jgpausas.blogs.uv.es 9 Nov 2015

 

Fire behaviour by Vareschi

May 13th, 2016 No comments

Recently I came across this figure published in 1962 by Volkmar Vareschi [1] which nicely synthesize variations in temperatures in the flame and in the soil, as well as flame height and flame spread (time and distance) in a simple hand-drawing. It is not easy to see a figure on fire behaviour as simple and illustrative as this one. It refers to a burn of a Trachypogon savanna in Los Llanos, Venezuela. Vareschi (1906-1991) was born in Austria and moved to Venezuela in 1950; he is considered a pioneer in tropical plant ecology; one of his papers was about savanna fires [1].

 

Vareschi-1962-burnFigure 2 from [1]

 

References

[1] Vareschi, V. (1962) La quema como factor ecológico en los Llanos. Boletin de la Sociedad Venezolana de Ciencias Naturales 23, 9-31.
 

Disturbance maintains alternative biome states

November 9th, 2015 No comments

It is becoming more and more evident that climate alone does not explain spatial and temporal patterns of the world vegetation, and that disturbance regimes explain an important part of the variability in vegetation and biome composition and distribution [1]. This has been suggested specially in tropical ecosystems where alternative vegetation states (e.g., forests and savannas) are possible for a given climatic conditions [2]. For instance, in dry years, surface fires may enter in forests and kill fire-sensitive trees and select for fire-resistant woody species with open crown architectures that generates well lit communities with a flammable grassy understory. Forest trees and savannas trees have a marked difference in bark thickness (thinner in the former) and thus a contrasted sensitivity to surface fires [3]. Thus, a switch to a forest state from a savanna depends on a sufficiently long fire interval or high resource availability allowing the outcompetition of shade-intolerant savanna trees and grasses (i.e. the inhibition of fires) by means of a closed canopy of forest trees. Similarly, herbivory can also exert a control on woody biomass and favour herbivory-resistant shrubs and grasses. However, empirical (field-based) evidence for alternative sates were very limited. In a recent paper [4] we used field data to show that, for a wide range of environmental conditions (in South America and Africa), fire feedbacks maintain savannas and forests as alternative biome states in both the Neotropics and the Afrotropics. In addition, wooded grasslands and savannas occurred as alternative states in the Afrotropics, depending on the relative importance of fire and herbivory feedbacks. That is, we found evidence for a disturbance-driven bistability in the Neotropics and a disturbance-driven tristability in Afrotropics (figure below).

Savanna-states

Fig. Top: Frequency distribution of basal area in afrotropical (tristability) and neotropical (bistability) ecosystems. Bottom: The discontinuous pattern of basal area along the resources gradient for both afrotropical and neotropical ecosystems (red: wooded grasslands; orange: savannas; green: forests). Note that there are regions of the gradient where two alternative vegetation types are possible; they are maintained by different disturbance regime (see [4]).

References:
[1] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26: 4-6. [doi | pdf | suppl.]

[2] Dantas V., Batalha MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454-2463. [doi | pdf | appendix]

[3] Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29: 317-327. [doi | pdf | suppl.]

[4] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecology Letters 19:12-19 [doi | wiley | pdf |supp.– New!

[5] Update (a new relevant paper): Pausas J.G. & Dantas V.L. 2017. Scale matters: Fire-vegetation feedbacks are needed to explain tropical tree cover at the local sacle. Global Ecol. Biogeogr. 26: 395–399. [doi | pdf | post ]

Afrotropical and neotropical savannas are different

July 29th, 2013 No comments

Savannas are typically ecosystems dominated by grasses with a variable tree density (e.g., [1]). However, the savanna biome is very large, it occurs in different continents, and includes a large variability in the vegetation structure and composition. Fire and herbivory are the main disturbance factors shaping savannas worldwide and because the different climatic conditions and the different evolutionary histories among different savannas, fire and herbivory regimes also varies among savannas. Because plants are not adapted to fire and herbivory “per se” but to specific regimes of herbivory and fire [2], we expect different strategies to cope with these disturbances in different savannas. In this framework, we have recently compared savannas from Africa and from South America (afrotropical and neotropical savannas respectively) [3]: Afrotropical savannas have a dryer climate and are more intensely grazed than neotropical savannas, and thus the amount of available fuel is typically lower in afrotropical than in the neotropical savannas. Consequently fires tend to be more intense in neotropical savannas. In afrotropical conditions, young woody plants tend to grow quickly in height to soon locate the canopy above the flame zone before the next fire, and above the browsing height. Thus these plants tend to have a pole-like or lanky architecture (the lanky strategy). In contrast, in neotropical savannas where herbivory pressure is lower they require a thick corky bark for protection against relatively intense fires (the corky strategy) [3]. Despite the two fire escape strategies appear in both Africa and South America, we suggest that the lanky strategy is more adaptive in afrotropical savannas, while the corky strategy is more adaptive in neotropical savannas [3].


Figure: Diospyros hispida A.DC. (Ebenaceae), a South American example of a plant with the corky strategy. Although the trunk was fully burned one year earlier (dark branches and trunk), the bark protected the lateral buds which enabled epicormic resprouting and the formation of lateral resprouts (light grey branches). This photo was taken in Emas National Park (cerrado ecosystem, Brazil) at the beginning of the rainy season (2011) when this deciduous plant starts to produce new leaves (Photo: V.L. Dantas). For an example of the lanky strategy see [4].

References:
[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94:2454-2463. [doi | pdf | blog]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16(8): 406-411. [doi | trends | pdf]

[3] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species Journal of Ecology 101: 1265-1272 [doi | pdf]

[4] Archibald, S. & Bond, W.J. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karoo in forest, savanna, and arid environments. Oikos, 102: 3-14.

 

Fire-stimulated flowering

May 25th, 2013 No comments

Some plant species flower profusely and quickly after fire (fire-stimulated flowering). Compared with resprouting or postfire seeding, this trait is relatively unknown outside of South Africa and Australia [1, 2]. It is considered one of the adaptations of some resprouting species to live in recurrently burn environments. There are some of these species that rarely flower without a fire (obligate postfire flowering) while others can flower in the absence of fire but they produce more flowers after it (facultative postfire flowering). One example I had the chance to observe recently in Central America is Bulbostylis paradoxa (Cyperaceae; Figure below); it is a very flammable plant that grow in savannas and dry forest of Central/South America and the Caribbean. Local foresters told me that they have never seen this species flowering in absence of fire, and that they start flowering next day after the fire.


Figure: Bulbostylis paradoxa (Cyperaceae) one month after a fire in Santa Rosa National Park, Costa Rica (fotos: J.G. Pausas, May 2013).

References:
[1] Bytebier B., Antonelli A., Bellstedt D.U., Linder H. P. 2011. Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc. R. Soc. B, 278: 188-195.

[2] Lamont B.B., Downes K.S. 2011. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol. 212: 2111-2125.

 

Fire shapes savanna-forest mosaics in the Brazilian cerrado

May 14th, 2013 No comments

Cerrado is the name of a tropical fire-prone mosaic of savanna and forest in Brazil. In a recent paper [1], we showed that in cerrado landscapes, despite the existence of a great variety of community structure (from open savannas to closed forests; Figure below), there are two well-defined stable states of community function, each associated with contrasting levels of community closure (open and closed environments) and maintained by different fire regimes. Soil properties, phylogenetic and non-phylogenetic beta-diversities, and most of the plant functional traits presented a threshold pattern along the community closure gradient with coinciding breakpoints, providing strong evidence of a functional threshold along the forest-savanna gradient. Open environments consisted of communities growing on poor soil and dominated by short species with early investments in thick barks, low wood density and with thick and tough leaves (high toughness and low specific area). In contrast, closed communities grow in more fertile soils and include plants having the opposite functional attributes. Moreover, we found contrasting fire regimes on the two sides of the threshold, with open formations showing shorter fire intervals than closed formations and a switch from communities dominated by fire-resistant plants to communities dominated by shade tolerant species that compensate for their lack of fire resistance by efficiently closing the canopy (i.e., reducing flammability). Overall, these results are consistent with the theoretical model of fire-plant feedbacks as main drivers of the coexistence of two stable states, savanna and forest. In this context, we provide the first field-based evidence for a community-level threshold separating two vegetation states with distinct functional and phylogenetic characteristics and associated with different fire regimes.

Top: A woodland cerrado (cerrado sensu stricto) six months after a fire, with several top-killed trees and a developed layer of resprouting vegetation; and one of the sampled closed forests.
Middle: A dense woodland cerrado (cerrado denso); one example of a typical thick-barked species found in open communities (Anadenanthera peregrina (Benth.) Reis, Fabaceae); a transitional zone between dense savannas and forests.
Bottom: A typical open savanna at the early rainy season, with tall flammable grasses and small trees and shrubs.
Photo credits: V. Dantas, G. Sartori, V. Cadry, J.G. Pausas, F. Noronha, A. Favari. See [1].

References

[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94: 2454-2463. [doi | pdf]

 

Fire generates intraspecific trait variability in neotropical savannas

August 28th, 2012 No comments

“Cerrado” are neotropical savannas from Brazil. As in most savannas, fire is very frequent in cerrado, and fires has been occurring in these ecosystems during the last few millions years. Consequently, cerrado communities are strongly filtered by fire and are composed by species capable of succeed under frequent fires (e.g., resprouters, with very thick bark, etc). A recent study [1] comparing zones with different fire regimes (annual fires, biennial fires, and protected from fires) within the cerrado (in Emas National Park) suggests that most plant trait variability is found within species (intraspecific) and little trait variability is due to changes in species composition (interspecific) between fire regimes. Thus, at community scale, fire act more as an filter, preventing some of the species from outside cerrado to colonize the cerrado (e.g., from nearby non-flammable forests), than as an internal factor structuring species composition in the already filtered cerrado communities with different fire regimes. However, fire acts as an important factor generating intraspecific variability. These results support the hypothesis of the prominent importance of intraspecific variability in strongly fire-filtered communities [2,3].

Figure: The rhea (emas in Portuguese; Rhea americana) are a flightless birds that give the name to the Emas National Park (Parque Nacional das Emas), a World Natural Heritage site located in the Brazilian Central Plateau (Photo: JG Pausas, 2009, during the field sampling [1]).

References

[1] Dantas V.L., Pausas J.G., Batalha M.A., Loiola P.P. & Cianciaruso M.V. 2013. The role of fire in structuring trait variability in Neotropical savannas. Oecologia, 171: 487-494. [doi | pdf]

[2] Moreira B., Tavsanoglu Ç. & Pausas J.G. 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia, 168, 671-677. [doi | pdf | post]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | wiley | pdf]