El pasado 24 de abril falleció un amigo, el Profesor Welington Delitti, después de luchar duramente, y durante más de dos años, contra un cáncer. Welington era profesor de ecología en el Instituto de Biociencias de la Universidad de Sao Paulo (Brasil), donde dirigió a numerosos estudiantes; también tuvo un papel importante en la dirección del Instituto (director 2007-2011 y subdirector 2011-2015). Su investigación se centraba principalmente en el cerrado (sabanas) de Brasil, con especial énfasis en los ciclos de materia orgánica y nutrientes y, más recientemente, en la restauración y conservación de ese maravilloso ecosistema. Durante su visita a Valencia (España) trabajó sobre el efecto de la recurrencia del fuego en matorrales de coscoja (Quercus coccifera). Hizo una aportación importante a la ecología del cerrado, y muchos de sus trabajos fueron publicados en revistas científicas brasileñas e internacionales (ver lista de publicaciones aquí). Y fue él quien me mostró ese ecosistema tan interesante por primera vez.
Personalmente era una persona entrañable, buena, y muy comprometida con la universidad y la sociedad. Era muy apreciado en su universidad por su buena gestión del Instituto de Biociencias. Su carácter afable y tranquilo le llevaba a resolver los conflictos de la forma más socialmente correcta posible. Nos enseñó una manera de funcionar, y por ello, su legado es grande.
The role of large herbivores in explaining broad-scale ecological pattern has probably been underestimated [1]. For instance, they are important in maintaining many landscapes and biomes across the world [2]. In a recent paper we show that the different history of megafauna abundance and extinctions in different continents has shaped the dominance of many plant traits [3]. Tropical Africa (paelotropics) and tropical South America (neotropics) are a clear example of contrasting megafauna history under similar environmental conditions. By comparing plant traits of woody species in different biomes (savannas and forests) and for the two different continents, we found that continent explain better the differences in plant traits than biome, climate, or soil, and that the differences between continents are consistent with the higher impact of large vertebrates in Africa than in South America. For instance, plants in African savannas tend to be more thorny and to have higher wood density, i.e., traits related to defense against megaherbivores. In contrast, South American savannas (Cerrado) harbor more species with underground bud banks (geoxyles [4]), and thicker protective barks, i.e., traits related to protect from wildfires [4,5].
Megafauna was certainly present in South America before the Holocene overkilling by humans, however, it is unlikely they live in the brazilian savannas (cerrado); their weak and vulnerable stems (low height growth, low wood density, and lack of spines), are unlikely to have evolved in regions with abundant browsers. We hypotheses that megafauna in South America was distributed in: 1) an open version of the current seasonally dry tropical forests (SDTF, e.g., Chaco) as the proportion of thorny species is similar to African savannas (and much higher than the cerrado); and 2) the subtropical grasslands, as they currently need to be maintained by humans due to the missing megaherbivores (landscape anachronism [1]).
Overall our results suggest that variation in plant traits in the tropics is unlikely to be fully understood without considering historical factors, especially the direct and indirect impacts of megafauna. Looking at plants and thinking on their megafauna history may provide novel insights for understanding vegetation patterns across the globe [1].
References
[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]
[2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]
[3] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad]
[4] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217: 1435–1448. [doi | pdf | suppl. | BBB database]
[5] Pausas JG. 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf] & Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.]
Professor Leopoldo (Léo) M. Coutinho (1934–2016; Fig. 1) from the University of Sao Paulo, Brazil, studied fire adaptations in Brazilian savannas (cerrado) during the 1970s, when very few researchers recognized fire as an evolutionary force. One of his important contribution on the cerrado ecology was on fire-stimulated flowering (Fig. 2), but he also studied serotiny, nutrient cycling, fire germination, water balance, among other topics [1,2]. However, his research is little known, partly because he was not part of the dominant Anglo-Saxon culture but also because he was ahead of his time, when fire and evolution were still distant concepts [1].
Figure. 1. Professor L. M. Coutinho in a Brazilian cerrado (photos by A. C. Coutinho)
Figure 2: Frequency distribution of the flowering intensity index (from 0 to 4) after fire (shaded; 90 days post-fire) and in control conditions (white) in 47 species (belonging to 20 families) of a cerrado ecosystem (prepared from data in Coutinho 1976). The 31 species with the highest post-fire flowering belong to 17 different families. From [1]
References
[1] Pausas J.G. 2017. Homage to L. M. Coutinho: fire adaptations in cerrado plants. Intern. J. Wildland Fire, [doi | pdf]
[2] Pivello, V.R. 2016. Professor Leopoldo Magno Coutinho: a visão de uma discípula. Biodiversidade Brasileira, 6(2): 4-5.
A recent paper suggested that fire-vegetation feedback processes may be unnecessary to explain tree cover patterns in tropical ecosystems and that climate-fire determinism is an alternative possibility [1]. This conclusion was based on the fact that it is possible to reproduce observed broad scale patterns in tropical regions (e.g., a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire-vegetation feedback processes. We argue that this reasoning is misleading because these two mechanisms (feedbacks vs fire-climate control) operate at different spatial and temporal scales [2]. It is not possible to evaluate the role of a process acting at fine scales (e.g., fire-vegetation feedbacks) using a model designed for reproducing regional-scale pattern; i.e., there is a mismatch between the scale of the question and the scale of the approach for addressing the question. While the distribution of forest and savannas are partially determined by climate, the most parsimonious explanation for their environmental overlaps (as alternative states) is the existence of feedback processes [3,4], as has been shown in many ecosystems, not only tropical ones [4]. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire-vegetation feedbacks are complementary processes acting at different spatial and temporal scales [2].
Figure: Fire activity (based on remotely sensed data) for savannas and forests located in the range of environmental conditions where both occurs, for Africa and South America (Afrotropics and Neotropics, respectively). From [2,3].
References
[1] Good, P., Harper, A., Meesters, A., Robertson, E. & Betts, R. (2016) Are strong fire–vegetation feedbacks needed to explain the spatial distribution of tropical tree cover? Global Ecol. and Biogeogr. 25, 16-25.
[2] Pausas J.G. & Dantas V.L. 2017. Scale matters: Fire-vegetation feedbacks are needed to explain tropical tree cover at the local sacle. Global Ecol. and Biogeogr. [doi | wiley | pdf]
[3] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecology Letters 19: 12-19. [doi | wiley | pdf | suppl | blog]
[4] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.] | blog]
Savannas are typically ecosystems dominated by grasses with a variable tree density (e.g., [1]). However, the savanna biome is very large, it occurs in different continents, and includes a large variability in the vegetation structure and composition. Fire and herbivory are the main disturbance factors shaping savannas worldwide and because the different climatic conditions and the different evolutionary histories among different savannas, fire and herbivory regimes also varies among savannas. Because plants are not adapted to fire and herbivory “per se” but to specific regimes of herbivory and fire [2], we expect different strategies to cope with these disturbances in different savannas. In this framework, we have recently compared savannas from Africa and from South America (afrotropical and neotropical savannas respectively) [3]: Afrotropical savannas have a dryer climate and are more intensely grazed than neotropical savannas, and thus the amount of available fuel is typically lower in afrotropical than in the neotropical savannas. Consequently fires tend to be more intense in neotropical savannas. In afrotropical conditions, young woody plants tend to grow quickly in height to soon locate the canopy above the flame zone before the next fire, and above the browsing height. Thus these plants tend to have a pole-like or lanky architecture (the lanky strategy). In contrast, in neotropical savannas where herbivory pressure is lower they require a thick corky bark for protection against relatively intense fires (the corky strategy) [3]. Despite the two fire escape strategies appear in both Africa and South America, we suggest that the lanky strategy is more adaptive in afrotropical savannas, while the corky strategy is more adaptive in neotropical savannas [3].
Figure: Diospyros hispida A.DC. (Ebenaceae), a South American example of a plant with the corky strategy. Although the trunk was fully burned one year earlier (dark branches and trunk), the bark protected the lateral buds which enabled epicormic resprouting and the formation of lateral resprouts (light grey branches). This photo was taken in Emas National Park (cerrado ecosystem, Brazil) at the beginning of the rainy season (2011) when this deciduous plant starts to produce new leaves (Photo: V.L. Dantas). For an example of the lanky strategy see [4].
References:
[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94:2454-2463. [doi | pdf | blog]
[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16(8): 406-411. [doi | trends | pdf]
[3] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species Journal of Ecology 101: 1265-1272 [doi | pdf]
[4] Archibald, S. & Bond, W.J. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karoo in forest, savanna, and arid environments. Oikos, 102: 3-14.
Cerrado is the name of a tropical fire-prone mosaic of savanna and forest in Brazil. In a recent paper [1], we showed that in cerrado landscapes, despite the existence of a great variety of community structure (from open savannas to closed forests; Figure below), there are two well-defined stable states of community function, each associated with contrasting levels of community closure (open and closed environments) and maintained by different fire regimes. Soil properties, phylogenetic and non-phylogenetic beta-diversities, and most of the plant functional traits presented a threshold pattern along the community closure gradient with coinciding breakpoints, providing strong evidence of a functional threshold along the forest-savanna gradient. Open environments consisted of communities growing on poor soil and dominated by short species with early investments in thick barks, low wood density and with thick and tough leaves (high toughness and low specific area). In contrast, closed communities grow in more fertile soils and include plants having the opposite functional attributes. Moreover, we found contrasting fire regimes on the two sides of the threshold, with open formations showing shorter fire intervals than closed formations and a switch from communities dominated by fire-resistant plants to communities dominated by shade tolerant species that compensate for their lack of fire resistance by efficiently closing the canopy (i.e., reducing flammability). Overall, these results are consistent with the theoretical model of fire-plant feedbacks as main drivers of the coexistence of two stable states, savanna and forest. In this context, we provide the first field-based evidence for a community-level threshold separating two vegetation states with distinct functional and phylogenetic characteristics and associated with different fire regimes.
Top: A woodland cerrado (cerrado sensu stricto) six months after a fire, with several top-killed trees and a developed layer of resprouting vegetation; and one of the sampled closed forests. Middle: A dense woodland cerrado (cerrado denso); one example of a typical thick-barked species found in open communities (Anadenanthera peregrina (Benth.) Reis, Fabaceae); a transitional zone between dense savannas and forests. Bottom: A typical open savanna at the early rainy season, with tall flammable grasses and small trees and shrubs.
Photo credits: V. Dantas, G. Sartori, V. Cadry, J.G. Pausas, F. Noronha, A. Favari. See [1].
References
[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94: 2454-2463. [doi | pdf]
“Cerrado” are neotropical savannas from Brazil. As in most savannas, fire is very frequent in cerrado, and fires has been occurring in these ecosystems during the last few millions years. Consequently, cerrado communities are strongly filtered by fire and are composed by species capable of succeed under frequent fires (e.g., resprouters, with very thick bark, etc). A recent study [1] comparing zones with different fire regimes (annual fires, biennial fires, and protected from fires) within the cerrado (in Emas National Park) suggests that most plant trait variability is found within species (intraspecific) and little trait variability is due to changes in species composition (interspecific) between fire regimes. Thus, at community scale, fire act more as an filter, preventing some of the species from outside cerrado to colonize the cerrado (e.g., from nearby non-flammable forests), than as an internal factor structuring species composition in the already filtered cerrado communities with different fire regimes. However, fire acts as an important factor generating intraspecific variability. These results support the hypothesis of the prominent importance of intraspecific variability in strongly fire-filtered communities [2,3].
Figure: The rhea (emas in Portuguese; Rhea americana) are a flightless birds that give the name to the Emas National Park (Parque Nacional das Emas), a World Natural Heritage site located in the Brazilian Central Plateau (Photo: JG Pausas, 2009, during the field sampling [1]).
References
[1] Dantas V.L., Pausas J.G., Batalha M.A., Loiola P.P. & Cianciaruso M.V. 2013. The role of fire in structuring trait variability in Neotropical savannas. Oecologia, 171: 487-494. [doi | pdf]
[2] Moreira B., Tavsanoglu Ç. & Pausas J.G. 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia, 168, 671-677. [doi | pdf | post]
[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytologist 193: 18-23. [doi | wiley | pdf]