Archive

Posts Tagged ‘afforestation’

Afforestation, wildfires, and C emission in Chile

November 30th, 2023 No comments

During the 2016/17 fire season in Chile, wildfires burned about 600,000 ha, a record for the region. The fact that the region was covered by large and dense tree plantations that created a continuous fuel bed, contributed to these massive wildfires (Fig. 1), together with an intense drought with strong head waves. That is, afforestation as established in Chile can lead to larger and more severe fires under warming conditions [1]. These mega-fires have multiple socioeconomic consequences. A recent analysis suggests that afforestation generates the emission of large amounts of greenhouse gases (they act as a net carbon source) while native forests act as a sink (Figure 2). 

Figure 1: Analysis of the areas affected by fires according to types of use (forest plantations, native forest, Scrubland + pastures, and agricultural areas), in relation to what is available in each of the 4 regions that have burned the most (V, RM, VI, VII are: Valparaiso, Metropolitana, O’Higgins, and Maule). Positive data means that fire has positively selected this type of use (it has burned more than expected by the area it occupies); the negative data indicates that fire tends to avoid such land use. There is a strong tendency for plantations to burn more than expected according to their abundance in the landscape (positive values), while native forests, scrub, or agricultural areas are burned similarly or less than expected according to their abundance (negative values). The region VII (Maule) is the most extreme in the positive selection of plantations and negative of other uses. Elaborated based on official SIDCO-CONAF data (Chile) [2].

Figure 2, left: Forest plantations act as a net carbon source in contrast to the native forests (sink). Shown is the carbon balance (million tons of CO2-equivalent; including CO2, CH4, and N2O) for the period 1990–2018, including capture (biomass increment and long-lived harvested wood products) and emissions (short-lived harvested wood products and wildfires), for native forests and for plantations in Chile. Dots are mean annual values (the outlier for plantations corresponds to the 2017 mega-fires). From [3]

Figure 2, right: The contribution of tree plantations to burned area is increasing. Shown are the area of plantations burnt annually (ha, in orange) and the proportion of the area of plantations burnt annually in relation to the total area burnt, including native forests, shrublands, and grasslands (%; data in black symbols, fit in red for the period 1984–2022). Note that the proportion of plantations burnt increases more steadily than the area of plantations burnt, probably as an indication that plantations have become increasingly more fire-prone compared with other land uses. From [3]

Reference
[1] Leverkus A.B., Thorn S., Lindenmayer D.B. & Pausas J.G. 2022. Tree planting goals must account for wildfires. Science 376: 588–589. [doi | science | pdf]

[2] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10

[3] Gómez-González S, Miranda A, Hoyos-Santillan J, Lara A, Moraga P & Pausas J.G. 2024. Afforestation and climate mitigation: lessons from Chile. Trends Ecol. Evol. 39(1) [doi | pdf]

 

More on Chile | Afforestation 

Postfire management in Turkey

January 27th, 2022 No comments

This post complements the letter published today in the Science [doi] – A version of that letter is also available in Turkish here.

Turkey was hit hard by wildfires in 2021, with a record of about 203,000 ha burnt. Most of the area burnt was covered by Mediterranean Pinus brutia forests. Pinus brutia is not a fire-resistant trees, it dies after a fire; however, they have serotinous cones thus after fire the seeds are dispersed and new individuals recruit few months later. This forest also includes many shrubs able to resprout or germinate after fire. Thus natural regeneration was expected in most of the affected area. In fact, 4 months after fire, we already observed pine seedlings and many species resprouting [link]. To preserve this ecosystems, it is important to preserve their regeneration potential. Usually, quick postfire management is only needed if soil losses are likely; in those environments, soil losses typically occurs in only a small proportion of the landscape.

However, the Turkish government is cutting all dead trees (salvage logging). In many places, heavy machinery is being used and forest roads are being opened. In some cases, logging is followed by seeding or by terracing and new tree planting. That is, in some places they are transforming an ecosystem to an artificial afforestation. Thus the postfire management actions are more disturbing than the fire. And these postfire actions are taking place in both unprotected public forests and in conservation areas (e.g. Marmaris National Park).

It is worth remembering that standing dead trees have many ecological functions such as to reduce the impact of raindrops on the ground (i.e., reducing erosion), maintain some humidity, capture water from fogs, serve as perches for birds that bring seeds and contribute to the regeneration, and are habitat for many fauna (mainly invertebrates and some birds). And when dead trees fall down, they provide organic matter and nutrients to the soil. 

We urge the Turkish General Directorate of Forestry to stop degrading ecosystems and move toward more ecologically sustainable forest management.

All photos below were Pinus brutia forests.

Postfire salvage logging + terracing + plantation in Marmaris National Park (see also this video)

This image has an empty alt attribute; its file name is IMG_9706_m-1024x692.jpgThis image has an empty alt attribute; its file name is IMG_9704_m-1024x561.jpg

Postfire salvage logging of burned trees in the Marmaris area

 

Examples of destroying potential natural postfire regeneration in Antayla, Turkey. Click the image to enlarge. Photos: link

References

[1] Tavsanoglu, Ç. & Pausas J.G: 2022. Turkish postfire action overlooks biodiversity. Science [doi | pdf | Turkish version]

[2] Marmaris postfire regeneration, jgpausas.blogs.uv.es/2021/12/05/

Mythbusting Forests

July 23rd, 2020 2 comments

Despite the multiple evidence that afforestation is not a solution for mitigating the increased atmospheric CO2 [1], there are still lobbies and multimillionaire clubs willing to plant millions of trees at the global scale, and spreading myths about the benefits of trees and large afforestation programs. Recently (17 July 2020), William Bond gave a talk at Oxford University to bust these myths. Here is his talk, and below is a summary of the top 5 myths.

Myth 1. Forest are ancient, non-forests are caused by deforestation. There is evidence of ancient species-rich grasslands and shrublands in many parts of the world (from Cerrado in Brazil, to grasslands in Africa, shrublands in Mediterranea ecosystems, etc.). In fact animal grazers evolved long ago (long before humans could deforest) in grasslands. There are also evidences of many tropical forests that were thought to be ancient and are not (e.g., youtube). This myth has deep roots in the western culture [2].

Myth 2. Oxygen comes from trees: cutting down forest will deprive us of air to breath. Oxygen is more ancient than forests! The atmospheric concentration of oxygen during much of the evolutionary history of plants, before the rise of dense tropical forests, has been higher than current level (21%). Fire requires oxygen to burn, and there has been fire since early colonization of land plants [3]. Statements like the Amazon provides 20% of our oxygen are wrong; the Amazon consume about as much O2 as it produces; O2 is ancient, it doesn’t depend on trees (see details: link1 & link2). There are lots of reasons to preserve the Amazon, but running out of oxygen isn’t one of them.

Myth 3. Forests ‘make rain’: plant trees to get more water. W. Bond note that many city dwellers and some climatologists suggest that planting trees would increase water supply, but farmers, which have daily experience with land management, says that planting trees dries up rivers. A catchment experiment in South Africa unambiguously show that catchments with tree plantations get drier compared with those under natural shrublands (Wyk 1987). Maybe some catchments, given their size, climate and topography, may generate their own rainfall (as often suggested for the Amazon), but this doesn’t seems a general rule. Planting trees will not ‘make rain’, most likely will dry out the watershed (e.g., Wang et al. 2020).

Myth 4. The biggest store of terrestrial carbon is in tropical forests. Tropical forests store about 225 Pg C, while boreal soils store ca. 1300 Pg C. So, from the C perspective, it is more important to conserve boreal soils (peatlands, etc.) than tropical forests! Obviously tropical forest need to be conserved for their biodiversiy. But you better forget about planting trees, and start thinking in conserving boreal peatlands as their destruction would release high amount of CO2 to the atmosphere. See also: Friggens et al. 2020.

Myth 5. Forests equate with biodiversity. Many tropical forests are highly diverse, but there are examples where planting trees implies a loss of biodiversity (Abreu et al. 2017, Phifer et al. 2017). When comparing savannas and forest for the same rainfall, there are no differences in biodiversity (Murphy et al. 2016). In addition, many of the global biodiversity hotspots are open non-forest ecosystems or mosaics of forest and open ecosystems. So the myth cannot be hold. In fact, landscape mosaics of forest and non-forest are highly diverse landscapes [4].

References

[1] Afforestation is not the solution to mitigate CO2, jgpausas.blogs.uv.es/2019/10/17/

[2] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

[3] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | OUP | pdf | post]

[4] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]  


Update: a new paper that addresses this topic:
Fleischman et al. 2020. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience, doi: 10.1093/biosci/biaa094

Afforestation is not a solution to mitigate CO2 emissions

October 17th, 2019 No comments

“I cannot think of a more tasteless undertaking than to plant trees in a naturally treeless area, and to impose an interpretation of natural beauty on a great landscape that is charged with beauty and wonder, and the excellence of eternity.” – Ansel Adams

 

Some scientific articles and many newspapers and magazines have spread the idea that planting many trees would be one of the best and most natural ways to fight against climate change. This is because trees fix CO2 through photosynthesis and thus they could lower the atmospheric CO2 concentration. To revert the current CO2 levels, if possible at all, would require the tree plantation to be massive and global. However there is increasing evidence that a massive afforestation is not a solution for mitigating CO2 emissions, and in fact, it could be detrimental, especially in a warming world. Here are the main reasons:

  • Planting trees in grasslands, savannas, shrublands and other open ecosystems (those potential for massive afforestation) would imply a large loss of biodiversity. Many of these environments are ancient, with many endemics to open ecosystems, i.e., species that are shade-intolerant o require large open spaces [1].
  • Potential carbon fixation by afforestation, as estimated by those advocating for massive tree plantations, is largely overestimated. For instance, they often assume that treeless ecosystems do not store C, while many of these ecosystems store a lot of C below-ground (savannas, shrublands, peatlands, …). They also neglect that forest in boreal and high mountain environments absorb more sunlight (reduce albedo) and emit more heat than treeless ecosystems (especially when snowy), and thus they exacerbate global warning. Similarly massive afforestation in arid ecosystems could also reduce albedo (increase darkness). After accounting for all these and other details [2-5], the potential C fixation estimates by afforestation become much lower than previously thought.
  • There are physiological limits to increase ecosystem photosynthesis, and the increase is very slow (compared with the anthropogenic CO2 release). Any increase would require huge amount of water and the concomitant increase in respiration [6].
  • Many of the potential sites for afforestation are in dry seasonal climate, and thus prone to fire, if fuel is available. Massive afforestation would increase the amount and continuity of fuels (landscape homogeneization), increasing the chance of large and intense fires (i.e., abruptly releasing large amounts of CO2); this is already happening with other afforested areas (e.g., 2017 fires in Portugal and Chile [7]). They would also be prone to diseases and insect outbreaks, especially given the ongoing warming.
  • Massive afforestation would reduce land availability for agriculture and grazing; it would also consume a lot of water [8]. All this would trigger a number of socio-economic impacts (e.g., rural depopulation), especially in poor countries.
  • Massive afforestation would be very expensive, yet would not make much C fixation during the next two or three decades (small trees don’t store much C). For C fixation it would be more efficient (and sustainable) to stop deforestation (i.e., to conserve mature forests with trees that are currently fixing C [9]), i.e., to pay subsides to owners or countries for conservation (e.g., Amazon, Indonesia, etc.).
  • Certainly tree planting (and logging) may affect the C cycle, but it affects the short-term C cycle (decade scale). Most of the C we are burning and emitting to the atmosphere was fixed more than 100 millions of years ago (Mesozoic; 90% of the coal was deposited 300 Mya); it is another temporal scale. You cannot mix those temporal scales. Small changes in the short-term C cycle (management scale) are not going to make much difference to the long-term C cycle (geological scale).

There is no scientific evidence to support massive afforestation to fight against climate change. And we should not get distracted from the urgent actions needed: to drastic reduce fossil fuel use, to invest in alternative energy sources, to stop deforestation and ecosystem destruction, and to restore natural ecosystems.

Note that this message is not against tree plantations per se (e.g., for wood, food, fiber, for improving urban quality, etc.), but to emphasize that all the evidence points against massive afforestation as part of the solution for CO2 mitigation. For instance, planting trees in urban areas would contribute little to CO2 fixation, but have many other benefits, such as reducing the urban heat effect, filtering pollution, improving urban biodiversity and mental health for people, and even reducing the local climate change [10].

Left: species poor afforestation in southern Bulgaria; it burned with a high intensity fire 50 years after plantation (the Kresna fire, 2017). Right: species rich forest-savanna mosaic with frequent natural low intensity fires. Photos: JG Pausas, WJ Bond (from [11])

References

[1] Bond et al. 2019. The trouble with trees: Afforestation plans for Africa. Trends Ecol. Evol. doi:10.1016/j.tree.2019.08.003

[2] Veldman et al. 2019. On “The global tree restoration potential”. Science 366 (6463) 18 Oct 2019 [doi | link] + see also in the same issue: Lewis et al. [link], Friedlingstein et al. 2019 [link], Luedeling et al. [link], Delzeit et al. [link]

[3] Krause et al. 2019. Pitfalls in estimating the global carbon removal via forest expansion. bioRxiv 788026.

[4] Taylor SD & Marconi S. 2019. Rethinking global carbon storage potential of trees. bioRxiv 730325.

[5] Rahmstorf S. 2019. Can planting trees save our climate? RealClimate http://www.realclimate.org/index.php/archives/2019/07/can-planting-trees-save-our-climate/

[6] Baldocchi, D. & Peñuelas, J. (2019) The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol., 25, 1191-1197.

[7] Chile 2017 fires: fire-prone forest plantations, jgpausas.blogs.uv.es/2017/09/16/ | Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10/

[8] Feng et al. 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Clim Chan. 6, 1019–1022.

[9] Stephenson et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93 [see also: link]

[10] Pausas J.G., Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69: 143–151. [doi | oup | blog | pdf]

[11] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

Further readings: Texas AgriLife | Wired | Yale e360 | CSIC

Update: new additional references

Mackey et al. 2013. Untangling the confusion around land carbon science and climate change mitigation policy. Nature Climate Change, 3(6), Article 6. https://doi.org/10.1038/nclimate1804

Anderegg et al. 2020. Climate-driven risks to the climate mitigation potential of forests. Science, 368(6497).

Friggens et al. 2020. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26:5178–5188

Gómez-González S, Ochoa-Hueso R, & Pausas JG. 2020. Afforestation falls short as a biodiversity strategy. Science, 368(6498), 1439–1439. doi: 10.1126/science.abd3064

Goodell J. 2020. Why Planting Trees Won’t Save Us. Rolling Stone 25/6/2020.

Heilmayr et al. 2020. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nature Sustain, 1–9. doi: 10.1038/s41893-020-0547-0

Jiang et al. 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580: 227-231. (evidence of the limited role of forests and plantations for CO2 mitigation)

Wang et al. 2020. Assessing the water footprint of afforestation in Inner Mongolia, China. J. Arid Environ, 182, 104257.

Bond W. 2020. Myth-busting forests: https://jgpausas.blogs.uv.es/2020/07/23/

Skelton et al. 2020. 10 myths about net zero targets and carbon offsetting, busted. www.climatechangenews.com/2020/12/11

Waring B. 2021. There aren’t enough trees in the world to offset society’s carbon emissions – and there never will be. TheConversation, 23 Apr 2021
 
Koch A, Brierley C, Lewis SL 2021. Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences 18:2627–2647.
 
Leverkus A.B., Thorn S., Lindenmayer D.B. & Pausas J.G. 2022. Tree planting goals must account for wildfires. Science 376: 588–589. [doi | science | pdf]
 
Anderegg E.R.L. 2022. Trees aren’t a climate change cure-all – 2 new studies on the life and death of trees in a warming world show why. TheConversation 12 May 2022 
 
Climate Analytics (2023). Why offsets are not a viable alternative to cutting emissions. PDF
 
Morgan W. 2032. A tonne of fossil carbon isn’t the same as a tonne of new trees: why offsets can’t save us. The Conversation 9 March 2023
 

Incendios en Chile 2017

February 10th, 2017 No comments

Esta entrada se ha realizado en colaboración con Susana Paula (ICAEV, Universidad Austral de Chile)

En las últimas semanas una gran cantidad de incendios han afectado cerca de 600 mil hectáreas en la zona central de Chile, con unas 1600 casas destruidas, 11 fallecidos y varios miles de afectados [1]. Esto ha generado una alarma social, y se han publicado numerosas opiniones, muchas de ellas sin datos o con poco rigor. Aquí intentamos analizar lo ocurrido, de manera muy breve, partiendo de una base científica y de los datos oficiales proporcionados por el Sistema de Información Digital para el Control de Operaciones (SIDCO) de la CONAF (Gobierno de Chile).

Los ecosistemas de Chile central parece que hayan tenido una actividad historia de incendios naturales (durante el Cuaternario) menor que los otros ecosistemas mediterráneos. Esto es debido a que la elevación los Andes durante el Mioeno bloqueó las tormentas estivales y los rayos asociados, y por lo tanto limitó los incendios forestales naturales [2]. Los incendios devienen importantes en la zona central de Chile con la llegada de los humanos. Por lo tanto, muchas especies nativas de los ecosistemas de Chile no están especialmente adaptadas a un régimen con incendios relativamente frecuentes e intensos, ni han adquirido características que les confiere una especial inflamabilidad. Esto contrasta con las especies que viven en otros ecosistemas mediterránenos del mundo donde se encuentras plantas que se ven favorecidas por los incendios, incluyendo plantas muy inflamables en las cuales su reproducción incrementa con el fuego. En cualquier caso, existen en Chile muchas plantas que rebrotan bien después de incendio. De manera que los incendios actuales en Chile podrían generar efectos negativos en la biodiversidad de los bosques nativos (p.e, mortalidad de no rebrotadoras, invasión de exóticas), aunque habrá que evaluar la regeneración con detalle. Sin embargo, cabe destacar, que gran parte del paisaje ardido no corresponden a sistemas naturales, sino a plantaciones forestales de especies exóticas (Figura 1).

Fig1_supreficie-region
Figura 1. Superficie afectada por incendios durante este verano (hasta la fecha), en las diferentes regiones de Chile (de izquierda a derecha: de norte a sur), separando la superficie de bosque nativo (en verde) y de plantaciones de eucaliptos y pino (en azul). La linea y puntos, representa el promedio afectado por incendios en cada región, durante el periodo 1977-2016. Elaboración propia a partir de datos oficiales de SIDCO-CONAF (Chile).

 

Para que se den grandes incendios, se requiere igniciones, baja humedad y elevado combustible. En general, en las zonas altamente pobladas, las igniciones antrópicas son muy frecuentes, y se generan frecuentes conatos o incendios pequeños que son fácilmente extinguidos. Sólo se generan grandes incendios de difícil extinción, si el clima y el combustible son apropiados para ello. La gran actividad de incendios de estos días en Chile responde, en gran manera, a esos dos factores. Las condiciones climatológicas de este periodo, han sido muy propicias para los incendios. Según la Dirección Meteorológica de Chile, este enero es el mes con la temperatura máxima, la mínima y la media más altas desde que se tienen datos [3,4]. Por lo tanto, las condiciones meteorológicas para los incendios eran óptimas, más que nunca.

A ello cabe añadir que Chile central tiene un paisaje forestal muy inflamable, formado por grandes plantaciones de pinos y eucaliptos utilizados para la producción de papel y madera (Figura 1, [5-7]). Ninguna de estas especies son nativas de Chile, sino de zonas donde el fuego es una perturbación natural, y donde ser una planta inflamable no es necesariamente un problema, incluso es beneficioso para la reproducción. En Chile, estas plantaciones proporcionan gran cantidad de combustible (elevada biomasa, formaciones densas), de elevada inflamabilidad (los pinos y los eucaliptos tienen resinas y compuestos volátiles que les hacen muy inflamables), y con unas estructura muy homogénea (plantaciones densas, monoespecíficas y coetáneas); todo ello facilita la propagación de los incendios. Además, estas plantaciones, en muchos casos llegan hasta el límite con poblaciones, poniendo en riego a la gente en caso de incendio.

Un análisis de las regiones con mayor superficie quemada (superior al valor promedio histórico, Fig. 1; es decir, las regiones de Valparaiso (V), Metropolitana (RM), O’Higgins (VI) y Maule (VII)), sugiere que, en general, los incendios seleccionan las plantaciones de manera positiva, y los bosques nativos y zonas agrícolas de manera negativa (Figura 2). Es decir, que las plantaciones se quemas más (desproporcionadamente), que el resto del paisaje, cosa que enfatiza la elevada inflamabilidad y combustibilidad de las plantaciones actuales de Chile (Figura 3). Un reciente estudio, realizado de manera independiente y utilizando datos de satélite, llega a similares conclusiones [8].

Fig2_residuos_V-VIIFigura 2. Análisis de las áreas afectadas por incendios según tipos de uso (Plantaciones, Bosque nativo, matorral+pastos, y zonas agrícolas), en relación a lo disponible en cada una de las 4 regiones que más han ardido (V, RM, VI, VII; ver Figura 1). Los datos positivos, significan que el fuego ha seleccionado de manera positiva ese tipo de uso (se ha quemado más de lo esperado por la superficie que ocupa); los datos negativos indican que el fuego tiende a evitar ese tipo de uso. Por ejemplo, en la Región Metropolitana (RM, en verde) se ha quemado más o menos lo que se espera según las proporciones en paisaje de plantaciones y nativo (valores cercanos a 0). En cambio, el las demás regiones, hay una fuerte tendencia a que las plantaciones se quemen más de lo esperado según su abundancia en el paisaje (valores positivos), mientras que los bosques nativos, el matorral, o las zonas agrícolas se queman de manera similar o menos de lo esperado según su abundancia (valores negativos). La región VII (Maule) es la más extrema en selección positiva de plantaciones y negativa del resto de usos, y es la región donde más superficie ha sido afectada (Fig. 1). Elaboración propia a partir de datos oficiales de SIDCO-CONAF (Chile).

 

Las grandes plantaciones forestales de Chile pueden haber sido económicamente rentables, y haber contribuido a la economía del país, pero todo indica que son social y ecológicamente poco apropiadas (véase vídeo ilustrativo, abajo). Da la impresión que la política forestal de Chile está pensada en una época con una escala de valores y un clima del pasado. Dada la importancia de la industria forestal en Chile, la política forestal requiere actualizarse urgentemente, considerando el cambio climático, los incendios, y la calidad de vida de la población local.

 

Peumo-Eucaliptos
Figura 3. Impacto de un incendio cerca de Penco (Región del Bío-Bío), donde alternan plantaciones y bosque nativo. En primer plano, un peumo (Cryptocarya alba, especie del bosque nativo) parcialmente afectado. Foto: Fernando Saenger.

 

Referencias

[1] Wildfires in Chile and Argentina, Global Fire Monitoring Center

[2] Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press

[3] Todos los días de enero las temperaturas superaron los 30 ºC

[4] Escenario favorable para incendios

[5] Peña-Fernánde F. & Valenzuela-Palma, L. 2008. Incremento de los incendios forestales en bosques naturales y plantaciones forestales en Chile. En: González-Cabán, Armando, Coord. 2008. Proceedings of the second international symposium on fire economics, planning, and policy: a global view. Gen. Tech. Rep. PSW-GTR-208, Albany, CA [PDF en: español | inglés]

[6] Invasión de especies pirófitas en Chile con financiamento estatal, el mostrador 24/1/2017

[7] Plantaciones forestales e incendios, 27/1/2017

[8] Primer estudio satelital muestra que más de la mitad de lo quemado corresponde a plantaciones forestales

Más información sobre: incendios en Chile |

UPDATE: Declaración de MEDECOS sobre los incendios de ChileEspañol | English

UPDATE: Chile 2017 fires: fire-prone forest plantations