Archive

Posts Tagged ‘Brazil’

Megafauna history and plant defense traits

January 10th, 2022 No comments

The role of large herbivores in explaining broad-scale ecological pattern has often been underestimated [1]. Plants have defenses against large herbivores (e.g., spines, high wood density [2]). And many continents had abundant large herbivores (megafauna) that were extinguished in Pleistocene (except in Africa). In a recent paper [3] we asked, to what extent the past distribution of extinct magafauna explains current geographical distribution of plant defense traits in the Neotropics (South & Central America). We fond that a significant proportion of the variance in the distribution of wood density, leaf size, stem spines, and leaf spines are explained by variable related to past megafauna (richness and body mass).

We defined 3 antiherbiomes in South America, that is, regions with characteristic plant defenses, environmental conditions, and Pleistocene megafauna, as follows: Small-Leaves-Thorny (SLT): thorny and small-leaved plants, in arid, cold and nutrient-rich ecosystems, containing numerous extinct and extant large grazers. Intermediate-Leaves-Woody (ILW): intermediate leaf sizes and levels of chemical defenses, and very high wood density, in moist and hot climates, and extremely nutrient-poor soils; and a high extinct megafauna richness, especially in relation to small browsers and mixed-feeders. Broad-Chemically-defended-Leaves (BCL): very large leaves with chemical defenses, mostly associated with moist climates and intermediate fertility soils, with few but large extinct megafauna species, especially browsers. Similar antiherbiomes can be observed in current Africa. These antiherbiomes represent one of the most striking broad-scale anachronisms in ecology.

We estimated that in South America, savannas occupied about 10 millions of Km2 during the Pleistocene, ca. 63% of them were converted to forests (44% to moist forests, 19% to dry forests) after the megafauna extinction (biome shifts [4]), and ca. 37% remains as savanna (stable). This suggests that South America was a savanna-dominated continent, much more similar to Africa than today, and that a large proportion of South American forests are the result of megafauna extinctions.

Overall our results suggest that past (extinct) large herbivores explain an important proportion of the variability of current plant traits and community assemblies.

 

Fig. 1. Left: Distribution of the 3 anti-herbiomes. Right: Hypothesized distribution of savanna during the Pleistocene (coloured areas; based on the distribution of extinct megafauna), that currently are savanna (in yellow), moist forests (dark green) and dry forests (light green). From [3]
Fig. 2. Reconstruction of Pleistocene savanna (ILW antiherbiome) with Taxodon platensis (a mixed feeder) next to the tree Bowdichia virgilioides (sucupira-preto; Fabaceae), and a Notiomastodon in the background. Artist: Júlia d’Oliveira

Fig. 3. Additional reconstructions of the Pleistocene Brazilian savannas from [5]. Artist: Júlia d’Oliveira

 

References

[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]

[2] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad | blog ]

[3] Dantas V., Pausas J.G. 2022. The legacy of Southern American extinct megafauna on plants and biomes. Nature Comm. 13: 129 [doi | pdf | data & codes] – New!

[4] [2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[5] Pansani et al. 2019. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quat Sci Rev, 221, 105864. 

Flammability and coexistence

March 3rd, 2017 No comments

In the cover of the March issue of the Journal of Ecology (105:2) there is a picture of Palicourea rigida (Rubiaceae), a plant growing in the Brazilian savannas (cerrado). It is an example of a plant that survives in a very flammable environment (grassy savanna) thanks to a set of traits conferring very low flammability, including a very low specific leave area and a thick corky bark. Grasses generates fast fires of low intensity (fast-flammable strategy), and in this environment, having low flammability is adaptive as it increases survival (non-flammable strategy). That is, different (contrasted) flammability strategies allows coexistence. For the definition of the different flammability strategies see [1].

Pausas-2017-JEcol_cover2(photo by J.G. Pausas)

 

[1] Pausas J.G., Keeley J.E., Schwilk D.W. 2017. Flammability as an ecological and evolutionary driver. Journal of Ecology 105: 289-297. [doi | wiley | pdf | blog | brief]

 

Brazil 2016

June 27th, 2016 No comments

Summary of my June 2016 tour:

  • Brasilia: meeting point with S. Paula;  visit to the Jadim Botánico and the Chapada Imperial [photos A, E]
  • Pirenópolos: IAVS 2016; talk: “Plant strategies in fire-prone ecosystems: hidden buds” [photo B]; Pireneus
  • Rio Claro: Univesidade Estadual Paulista (UNESP); meeting with A. Fidelis & students (Luis, Talita, etc.). Visiting the Itirapina experimental fires [photo C]. Talk: “Fire, traits, and biodiversity: a global perspective”.
  • Piracicaba: Universidade de Sao Paulo (USP), meeting with B. Appezzato-da-Glória and collaborators to study underground resprouting structures [photo D]
  • Campinas: Universidade Estadual de Campinas (UNICAMP); meeting with V. Dantas and students (Paulo, André, etc.) [photo F]
  • Sao Paulo: meeting W. Delitti (USP)

brasil2016c
Photos: A (top left):  Susana Paula, Ericaulaceae and myself; B (top right) : my talk in Pirenópolis; C (bottom left): A. Fidelis and her students in front of an ‘underground tree’. D (center): Xylopodium with tuberous roots in Aldama (Appezzato-da-Glória lab); E (middle right): tree with a corky bark in the cerrado of the Jardim Botánico (Brasilia); E (bottom right): Having a drink with Vinicius Dantas in Campinas.

Related posts:

– Brazil 2015, jgpausas.blogs.uv.es 16 Mar 2015

– Fire shapes savanna-forest mosaics in the Brazilian cerrado, jgpausas.blogs.uv.es 14 May 2014

– Afrotropical and neotropical savannas are different, jgpausas.blogs.uv.es 29 Jul 2013

– Fire generates intraspecific trait variability in neotropical savannas, jgpausas.blogs.uv.es 28 Aug 2012

– Disturbance maintains alternative biome states, jgpausas.blogs.uv.es 9 Nov 2015

 

Brazil

March 16th, 2015 No comments

I will give the following talks in Brazil:

March 20, 2015: “Flammability as en ecological and evolutionary driver“, 15:00 h Bilogia, Universidade Estatual de Campinas (UNICAMP), SP.

March 27, 2015: “Fire and biodiversity: a global perspective“, 9:00, Instituto Ciencias Biológicas, Universidade de Brasília

UPDATE:

IMG_20150328_191147311_sm
Vinicius Dantas (University of Campinas), Marcelo Simon (EMBRAPA, Brasilia) and myself having a caipirinha in Pirenópolis.

Afrotropical and neotropical savannas are different

July 29th, 2013 No comments

Savannas are typically ecosystems dominated by grasses with a variable tree density (e.g., [1]). However, the savanna biome is very large, it occurs in different continents, and includes a large variability in the vegetation structure and composition. Fire and herbivory are the main disturbance factors shaping savannas worldwide and because the different climatic conditions and the different evolutionary histories among different savannas, fire and herbivory regimes also varies among savannas. Because plants are not adapted to fire and herbivory “per se” but to specific regimes of herbivory and fire [2], we expect different strategies to cope with these disturbances in different savannas. In this framework, we have recently compared savannas from Africa and from South America (afrotropical and neotropical savannas respectively) [3]: Afrotropical savannas have a dryer climate and are more intensely grazed than neotropical savannas, and thus the amount of available fuel is typically lower in afrotropical than in the neotropical savannas. Consequently fires tend to be more intense in neotropical savannas. In afrotropical conditions, young woody plants tend to grow quickly in height to soon locate the canopy above the flame zone before the next fire, and above the browsing height. Thus these plants tend to have a pole-like or lanky architecture (the lanky strategy). In contrast, in neotropical savannas where herbivory pressure is lower they require a thick corky bark for protection against relatively intense fires (the corky strategy) [3]. Despite the two fire escape strategies appear in both Africa and South America, we suggest that the lanky strategy is more adaptive in afrotropical savannas, while the corky strategy is more adaptive in neotropical savannas [3].


Figure: Diospyros hispida A.DC. (Ebenaceae), a South American example of a plant with the corky strategy. Although the trunk was fully burned one year earlier (dark branches and trunk), the bark protected the lateral buds which enabled epicormic resprouting and the formation of lateral resprouts (light grey branches). This photo was taken in Emas National Park (cerrado ecosystem, Brazil) at the beginning of the rainy season (2011) when this deciduous plant starts to produce new leaves (Photo: V.L. Dantas). For an example of the lanky strategy see [4].

References:
[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94:2454-2463. [doi | pdf | blog]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16(8): 406-411. [doi | trends | pdf]

[3] Dantas V. & Pausas J.G. 2013. The lanky and the corky: fire-escape strategies in savanna woody species Journal of Ecology 101: 1265-1272 [doi | pdf]

[4] Archibald, S. & Bond, W.J. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karoo in forest, savanna, and arid environments. Oikos, 102: 3-14.

 

Fire shapes savanna-forest mosaics in the Brazilian cerrado

May 14th, 2013 No comments

Cerrado is the name of a tropical fire-prone mosaic of savanna and forest in Brazil. In a recent paper [1], we showed that in cerrado landscapes, despite the existence of a great variety of community structure (from open savannas to closed forests; Figure below), there are two well-defined stable states of community function, each associated with contrasting levels of community closure (open and closed environments) and maintained by different fire regimes. Soil properties, phylogenetic and non-phylogenetic beta-diversities, and most of the plant functional traits presented a threshold pattern along the community closure gradient with coinciding breakpoints, providing strong evidence of a functional threshold along the forest-savanna gradient. Open environments consisted of communities growing on poor soil and dominated by short species with early investments in thick barks, low wood density and with thick and tough leaves (high toughness and low specific area). In contrast, closed communities grow in more fertile soils and include plants having the opposite functional attributes. Moreover, we found contrasting fire regimes on the two sides of the threshold, with open formations showing shorter fire intervals than closed formations and a switch from communities dominated by fire-resistant plants to communities dominated by shade tolerant species that compensate for their lack of fire resistance by efficiently closing the canopy (i.e., reducing flammability). Overall, these results are consistent with the theoretical model of fire-plant feedbacks as main drivers of the coexistence of two stable states, savanna and forest. In this context, we provide the first field-based evidence for a community-level threshold separating two vegetation states with distinct functional and phylogenetic characteristics and associated with different fire regimes.

Top: A woodland cerrado (cerrado sensu stricto) six months after a fire, with several top-killed trees and a developed layer of resprouting vegetation; and one of the sampled closed forests.
Middle: A dense woodland cerrado (cerrado denso); one example of a typical thick-barked species found in open communities (Anadenanthera peregrina (Benth.) Reis, Fabaceae); a transitional zone between dense savannas and forests.
Bottom: A typical open savanna at the early rainy season, with tall flammable grasses and small trees and shrubs.
Photo credits: V. Dantas, G. Sartori, V. Cadry, J.G. Pausas, F. Noronha, A. Favari. See [1].

References

[1] Dantas V., Batalha, MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition Ecology 94: 2454-2463. [doi | pdf]

 

Fire generates intraspecific trait variability in neotropical savannas

August 28th, 2012 No comments

“Cerrado” are neotropical savannas from Brazil. As in most savannas, fire is very frequent in cerrado, and fires has been occurring in these ecosystems during the last few millions years. Consequently, cerrado communities are strongly filtered by fire and are composed by species capable of succeed under frequent fires (e.g., resprouters, with very thick bark, etc). A recent study [1] comparing zones with different fire regimes (annual fires, biennial fires, and protected from fires) within the cerrado (in Emas National Park) suggests that most plant trait variability is found within species (intraspecific) and little trait variability is due to changes in species composition (interspecific) between fire regimes. Thus, at community scale, fire act more as an filter, preventing some of the species from outside cerrado to colonize the cerrado (e.g., from nearby non-flammable forests), than as an internal factor structuring species composition in the already filtered cerrado communities with different fire regimes. However, fire acts as an important factor generating intraspecific variability. These results support the hypothesis of the prominent importance of intraspecific variability in strongly fire-filtered communities [2,3].

Figure: The rhea (emas in Portuguese; Rhea americana) are a flightless birds that give the name to the Emas National Park (Parque Nacional das Emas), a World Natural Heritage site located in the Brazilian Central Plateau (Photo: JG Pausas, 2009, during the field sampling [1]).

References

[1] Dantas V.L., Pausas J.G., Batalha M.A., Loiola P.P. & Cianciaruso M.V. 2013. The role of fire in structuring trait variability in Neotropical savannas. Oecologia, 171: 487-494. [doi | pdf]

[2] Moreira B., Tavsanoglu Ç. & Pausas J.G. 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia, 168, 671-677. [doi | pdf | post]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | wiley | pdf]