Archive

Posts Tagged ‘Chile’

Afforestation, wildfires, and C emission in Chile

November 30th, 2023 No comments

During the 2016/17 fire season in Chile, wildfires burned about 600,000 ha, a record for the region. The fact that the region was covered by large and dense tree plantations that created a continuous fuel bed, contributed to these massive wildfires (Fig. 1), together with an intense drought with strong head waves. That is, afforestation as established in Chile can lead to larger and more severe fires under warming conditions [1]. These mega-fires have multiple socioeconomic consequences. A recent analysis suggests that afforestation generates the emission of large amounts of greenhouse gases (they act as a net carbon source) while native forests act as a sink (Figure 2). 

Figure 1: Analysis of the areas affected by fires according to types of use (forest plantations, native forest, Scrubland + pastures, and agricultural areas), in relation to what is available in each of the 4 regions that have burned the most (V, RM, VI, VII are: Valparaiso, Metropolitana, O’Higgins, and Maule). Positive data means that fire has positively selected this type of use (it has burned more than expected by the area it occupies); the negative data indicates that fire tends to avoid such land use. There is a strong tendency for plantations to burn more than expected according to their abundance in the landscape (positive values), while native forests, scrub, or agricultural areas are burned similarly or less than expected according to their abundance (negative values). The region VII (Maule) is the most extreme in the positive selection of plantations and negative of other uses. Elaborated based on official SIDCO-CONAF data (Chile) [2].

Figure 2, left: Forest plantations act as a net carbon source in contrast to the native forests (sink). Shown is the carbon balance (million tons of CO2-equivalent; including CO2, CH4, and N2O) for the period 1990–2018, including capture (biomass increment and long-lived harvested wood products) and emissions (short-lived harvested wood products and wildfires), for native forests and for plantations in Chile. Dots are mean annual values (the outlier for plantations corresponds to the 2017 mega-fires). From [3]

Figure 2, right: The contribution of tree plantations to burned area is increasing. Shown are the area of plantations burnt annually (ha, in orange) and the proportion of the area of plantations burnt annually in relation to the total area burnt, including native forests, shrublands, and grasslands (%; data in black symbols, fit in red for the period 1984–2022). Note that the proportion of plantations burnt increases more steadily than the area of plantations burnt, probably as an indication that plantations have become increasingly more fire-prone compared with other land uses. From [3]

Reference
[1] Leverkus A.B., Thorn S., Lindenmayer D.B. & Pausas J.G. 2022. Tree planting goals must account for wildfires. Science 376: 588–589. [doi | science | pdf]

[2] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10

[3] Gómez-González S, Miranda A, Hoyos-Santillan J, Lara A, Moraga P & Pausas J.G. 2024. Afforestation and climate mitigation: lessons from Chile. Trends Ecol. Evol. 39(1) [doi | pdf]

 

More on Chile | Afforestation 

Wildfires in southern Chile

November 29th, 2019 No comments

Ecosystems in southern Chile are not considered among the typical fire-prone ecosystems such as tropical savannas or mediterranean ecosystems. However, natural wildfires do occur (and has occurred since long ago), during drought periods, and are part of the ecological processes of the region. Here are some examples I have just visited.

Fitzroya cupressoides (alerce in Spanish, lahuán or lawal in Mapuche) is a shade-intolerant long-lived conifer native to the Andes of southern Chile and Argentina. Fitzroya is a monotypic genus in the cypress family. It often coexist with shade-tolerant species of Nothofagus (e.g., N. nitida). The bark of Fitzroya is relatively thick, and postfire tree survival depends on the intensity of fire; fire intensity in these ecosystems is typically patchy and some trees, especially large trees, do survive (Fig. 1 below and [1]). In fact, wildfires remove the shade-tolerant trees and open the space for Fitzroya which regenerates vegetatively (from root suckers) or from seeds coming from the surviving trees. Without wildfires, it would be hard for Fitzroya to compete with shade-tolerant broad-leaved trees.

Fig. 1. Dead and surviving Fitzroya cupressoides trees after fire in Parque Nacional Alerce Costero, Chile

Araucaria araucana (araucaria) is a conifer, considered a living fossil, native to central and southern Chile and western Argentina. It is a non-flammable tree (sensu [2]) because it typically self-prune their lower branches, the crown is quite open, it has a thick bark, and their foliage is hard and difficult to burn. This very low flammability allows Araucaria to survive even in flammable environments [2]. For instance, it occurs in shrublands of Nothofagus antartica (ñirre; see Fig. 2 below); this Nothofagus is a flammable multi-stemmed shrub that has a strong basal resprouting ability. This shrubland burn with some frequency but most Araucaria tree do not get burnt (fire can leave some scars in the trunk, see Fig. 3 below and dendroecological analysis in [3]). Araucaria araucana also growth in dens forests either as dominant tree or with other trees such as Nothofagus pumilo (lenga); such forest rarely burn and the regeneration of araucaria is based on gap dynamics. In fact, the two ecosystems (the shrublands of N. antartica, and the forests of N. pumilo) are an example of alternative biome states [4,5].

Fig. 2. Araucaria araucana growing in a shurbland of Nothofagus antartica (ñirre) in the foothills of the Lanín volcano, Chile
Fig. 3. Fire scars in three araucaria alive trees in the foothills of the Lanín volcano, Chile

References

[1] Lara A, Fraver S, Aravena JC & Wolodarsky-Franke A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience, 6, 100-109.

[2] Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297. [doi | wiley | pdf]
[post-1 | post-2]

[3] González ME, Veblen TT & Sibold JS. 2005. Fire history of Araucaria–Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32:1187-1202.

[4] Pausas JG. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[5] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trend Plant Sci. [postprint]

 

Reflexiones para la restauración posincendio en Chile

March 28th, 2018 No comments

A principios de septiembre de 2017, tuve la oportunidad de visitar algunas de las zonas afectadas por los grandes incendios ocurridos en Chile durante el verano austral (finales del 2016 e inicios del 2017). Aquí un resumen de esa visita.

Algunas reflexiones de esa visita:

Pausas J.G. 2017. Reflexiones para la restauración ecológica: visita a las zonas afectadas por incendios en la región de O’Higgins (Chile central). Chile Forestal, 387:51-53 [pdf | conaf]

 

Vídeo ilustrativo (realizado por la CONAF):

 

Ejemplos de la regeneración de la vegetación nativa: rebrotes 7 meses posincendio (pinchar para ampliar)

 

Regeneración de las plantaciones: 7 meses posincendio

 

Más información sobre incendios forestales en Chile

Agradecimientos: Cristian Ibáñez (Unversidad de La Serena), Andrés Meza (CONAF), Susana Paula (Universidad Austral)

Incendios Chile 2017: restauración y regeneración

September 17th, 2017 No comments

Los incendios del verano 2016/2017 en Chile central afectaron alrededor de unas 600,000 ha [1]. Ahora, y como es natural, la sociedad demanda la restauración urgente de los ecosistemas nativos afectados (>60% de la zona afectada fueron plantaciones forestales [1,2]). La restauración ecológica debe estar basada en el conocimiento, y no se debe realizar de manera generalizada y arbitraria. Una restauración inapropiada es un gasto económico innecesario y a veces incluso perjudicial para el ecosistema; por ejemplo, realizar plantaciones con maquinaria pesada en un ecosistema donde muchas plantas rebrotan después del incendio puede ser contraproducente, ya que puede limitar la regeneración natural. Por lo tanto, las acciones de restauración ecológica requieren de un diagnóstico del terreno previo [3] en el que se evalúe el potencial de erosión del suelo, el potencial de regeneración natural, y la potencial pérdida de especies (incluyendo los efectos de posibles especies invasoras posincendio). Las acciones de restauración deben ser específicas para cada una de las zonas donde se detecten estos problemas dentro del perímetro incendiado. Probablemente no se requerirá restauración alguna, aunque si un control del pastoreo, en aquellos sectores en los que no haya peligro de pérdida de suelo y la regeneración de la vegetación y de la mayoría de especies no esté comprometida. Se requieren actuaciones urgentes en zonas con pérdida potencial de suelo. Y en zonas sin riesgo de erosión, pero con pérdida de especies, se requieren acciones restaurativas a medio-largo plazo (por ejemplo, plantaciones con especies nativas).

A inicios de septiembre de 2017 (6–7 meses después de los incendios) muchas de las especies del matorral esclerófilo afectado por los incendios estaban rebrotando (fotos abajo); algunas otras estaban germinando (p.e., el tevo), aunque la mayoría de germinaciones observadas eran plantas herbáceas. También se observaron pies de especies arbustivas que no habían rebrotado (y que no se pudo determinar la especie), aunque no se puede asegurar que no lo hagan en los próximos meses. Sería interesante saber si en los sectores quemados hay especies que no rebrotan ni germinan después del incendio, pues las poblaciones de estas especies si habrían sido gravemente perjudicas por el fuego, y serían las especies a considerar en una restauración ecológica de la zona.


Fotos: Ejemplos de especies que estaban rebrotando a inicios de septiembre (7 meses después de los incendios): A: Tevo (Trevoa trinervis); B: Litre (Lithraea caustica); C: Quillaia (Quillaja saponaria); D: Bollén (Kageneckia oblonga); E: Mitique (Podanthus mitiqui); F: Patagua (Crinodendron patagua); G: Berberis sp.; H: Boldo (Peumus boldus).

Referencias
[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10/
[2] Chile 2017 fires: fire-prone forest plantations, jgpausas.blogs.uv.es/2017/09/16/
[3] Investigador aborda desafíos de la restauración ecológica tras los incendios en Chile; www.lignum.cl/2017/09/06/

Más información sobre: incendios en Chile | rebrote |

 

Chile 2017 fires: fire-prone forest plantations

September 16th, 2017 No comments

During the 2016/17 fire season in central Chile, wildfires burned about 600,000 ha, a record for the region (most of the area burned between 18-Jan and 5-Feb, 2017). Two factors are considered the main responsible of such a large area burned: (1) an intense drought with strong head waves (January was the hottest month in record), and (2) the fact that the region is covered by large and dense tree plantations that create a continuous fuel bed. The tree planted are two alien species: Pinus radiata and Eucalyptus sp., from California and Australia, respectively. Most burned area (+60%) were plantations, and if we standardize the area burned in relation to the area with each landuse in the region (plantations, native forest, grasslands, agriculture) we see that the plantations were more affected by fire than expected by their area in each region; and this contrast with the other landuses (Figure 1, [1]). That is, tree plantations were an important driver for the large area burned (highly flammable).

Interesting is that the two species planted not only are highly flammable, they also have very good (although very different) postfire regeneration mechanisms, because both are originally from fire-prone ecosystems and have adapted to coupe with crown fires. Pinus radiata have serotinous cones (closed cones that open with fire) and showed an extraordinary “natural” seedling regeneration postfire (Figure 2 top), while those eucalytps planted show epicormic (stem) resprouting that allows a quick canopy recovery (even young trees, Figure 2 bottom). All suggest that these plantations were born to burn!

Figure 1: Analysis of the areas affected by fires according to types of use (forest plantations, native forest, Scrubland + pastures, and agricultural areas), in relation to what is available in each of the 4 regions that have burned the most (V, RM, VI, VII are: Valparaiso, Metropolitana, O’Higgins, and Maule). Positive data means that fire has positively selected this type of use (it has burned more than expected by the area it occupies); the negative data indicate that fire tends to avoid such landuse. There is a strong tendency for plantations to burn more than expected according to their abundance in the landscape (positive values), while native forests, scrub, or agricultural areas are burned similar or less than expected according to their abundance (negative values). The region VII (Maule) is the most extreme in positive selection of plantations and negative of other uses. Elaborated on the basis of official SIDCO-CONAF data (Chile) [1].

 


Figure. 2. Postfire regeneration of tree plantations. Top: Extraordinary postfire seedlings regeneration of Pinus radiata (adult trees are dead). Bottom: epicormic resprouting of eucalypts (mixed with dead pines). Photos from early September (ca. 7 months after fire), in the Nilahue Barahona fire (O’Higgins region, Chile).

References

[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10

More information on:  Chile and fires | Serotiny | Epicormic resprouting

UPDATE (Jan 2019): this post and this other have inspired the following article:

Leverkus AB, Murillo PG, Doña VJ, Pausas JG. 2019. Wildfires: opportunity for restoration? Science 363 (6423): 134-135. [doi | science | pdf]

 

Postfire germination in Chile

July 22nd, 2017 No comments

In the matorral (chaparral-type vegetation) of Central Chile, natural fires are assumed to have been much less frequent (during the Quaternary) than in the other Mediterranean-type ecosystems (MTEs) of the world [1]. Thus, plant adaptive responses to fire are expected to be uncommon. Resprouting is a relatively widespread trait in Chilean woody species, although this traits is not really an indicator of the fire history as resprouters occur in many environments, not only in fire-prone ones [1,2]. Fire-stimulated germination (i.e., the increased seed germination after a heat shock or after the smoke produced by a fire) is a trait more specifically tied to fire [1,3]. A recent study [4] demonstrates that fire-stimulated germination is not as common in the Chilean woody flora as in other MTEs; i.e., negative seed responses to fire cues were more frequent than positive responses. Some seeds were damaged by fire, but many species were able to resist the heat shock although without an increase on germination. In few species, germination was stimulated (by heat or smoke), but the magnitude of the stimulation was relatively low. The overall effect is that fire-stimulated germination is poorly represented in the Chilean matorral. These results support the idea that this matorral had a history of lower fire activity than other mediterranean-climate regions, despite having a fire-prone climate. This low fire activity has been attributed to the effect of the Andes blocking many summer thunderstorms in central Chile, and thus reducing lightning and natural ignitions [1]. Lightning fires do occur in Chile, but typically further south; most current fires in central (mediterranean) Chile are of anthropogenic origin.

Two views of the Chilean matorral; left: La Campana National Park (photos: S. Gómez-González).

 

References

[1] Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press. [the book]

[2] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytol. 209: 945-954. [doi | wiley | pdf | Notes S1-S4 | Table S1]

[3] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7: e51523. [doi | plos | pdf]  

[4] Gómez-González S., Paula S., Cavieres L.A. & Pausas J.G. 2017. Postfire responses of the woody flora of Central Chile: insights from a germination experiment. PloS ONE 12: e0180661. [doi | plos | pdf]   New!

More on: fire and Chile | fire and germination |

Chile wildfires: MEDECOS declaration

March 1st, 2017 No comments

Some of the scientists attending the recent MEDECOS (International Conference on Mediterranean Ecosystems, Sevilla, February 2017 [1]) wrote a declaration on the recent wildfires that affected very large areas of Chile [2]. The declaration is composed of 10 statements (a decalogue) and is available here:

English version  |   Spanish version

Chile.2017.01.25Central Chile, MODIS image of January 25, 2017 (by NASA).

References:
[1] MEDECOS XIV
[2] Incendios en Chile 2017

Incendios en Chile 2017

February 10th, 2017 No comments

Esta entrada se ha realizado en colaboración con Susana Paula (ICAEV, Universidad Austral de Chile)

En las últimas semanas una gran cantidad de incendios han afectado cerca de 600 mil hectáreas en la zona central de Chile, con unas 1600 casas destruidas, 11 fallecidos y varios miles de afectados [1]. Esto ha generado una alarma social, y se han publicado numerosas opiniones, muchas de ellas sin datos o con poco rigor. Aquí intentamos analizar lo ocurrido, de manera muy breve, partiendo de una base científica y de los datos oficiales proporcionados por el Sistema de Información Digital para el Control de Operaciones (SIDCO) de la CONAF (Gobierno de Chile).

Los ecosistemas de Chile central parece que hayan tenido una actividad historia de incendios naturales (durante el Cuaternario) menor que los otros ecosistemas mediterráneos. Esto es debido a que la elevación los Andes durante el Mioeno bloqueó las tormentas estivales y los rayos asociados, y por lo tanto limitó los incendios forestales naturales [2]. Los incendios devienen importantes en la zona central de Chile con la llegada de los humanos. Por lo tanto, muchas especies nativas de los ecosistemas de Chile no están especialmente adaptadas a un régimen con incendios relativamente frecuentes e intensos, ni han adquirido características que les confiere una especial inflamabilidad. Esto contrasta con las especies que viven en otros ecosistemas mediterránenos del mundo donde se encuentras plantas que se ven favorecidas por los incendios, incluyendo plantas muy inflamables en las cuales su reproducción incrementa con el fuego. En cualquier caso, existen en Chile muchas plantas que rebrotan bien después de incendio. De manera que los incendios actuales en Chile podrían generar efectos negativos en la biodiversidad de los bosques nativos (p.e, mortalidad de no rebrotadoras, invasión de exóticas), aunque habrá que evaluar la regeneración con detalle. Sin embargo, cabe destacar, que gran parte del paisaje ardido no corresponden a sistemas naturales, sino a plantaciones forestales de especies exóticas (Figura 1).

Fig1_supreficie-region
Figura 1. Superficie afectada por incendios durante este verano (hasta la fecha), en las diferentes regiones de Chile (de izquierda a derecha: de norte a sur), separando la superficie de bosque nativo (en verde) y de plantaciones de eucaliptos y pino (en azul). La linea y puntos, representa el promedio afectado por incendios en cada región, durante el periodo 1977-2016. Elaboración propia a partir de datos oficiales de SIDCO-CONAF (Chile).

 

Para que se den grandes incendios, se requiere igniciones, baja humedad y elevado combustible. En general, en las zonas altamente pobladas, las igniciones antrópicas son muy frecuentes, y se generan frecuentes conatos o incendios pequeños que son fácilmente extinguidos. Sólo se generan grandes incendios de difícil extinción, si el clima y el combustible son apropiados para ello. La gran actividad de incendios de estos días en Chile responde, en gran manera, a esos dos factores. Las condiciones climatológicas de este periodo, han sido muy propicias para los incendios. Según la Dirección Meteorológica de Chile, este enero es el mes con la temperatura máxima, la mínima y la media más altas desde que se tienen datos [3,4]. Por lo tanto, las condiciones meteorológicas para los incendios eran óptimas, más que nunca.

A ello cabe añadir que Chile central tiene un paisaje forestal muy inflamable, formado por grandes plantaciones de pinos y eucaliptos utilizados para la producción de papel y madera (Figura 1, [5-7]). Ninguna de estas especies son nativas de Chile, sino de zonas donde el fuego es una perturbación natural, y donde ser una planta inflamable no es necesariamente un problema, incluso es beneficioso para la reproducción. En Chile, estas plantaciones proporcionan gran cantidad de combustible (elevada biomasa, formaciones densas), de elevada inflamabilidad (los pinos y los eucaliptos tienen resinas y compuestos volátiles que les hacen muy inflamables), y con unas estructura muy homogénea (plantaciones densas, monoespecíficas y coetáneas); todo ello facilita la propagación de los incendios. Además, estas plantaciones, en muchos casos llegan hasta el límite con poblaciones, poniendo en riego a la gente en caso de incendio.

Un análisis de las regiones con mayor superficie quemada (superior al valor promedio histórico, Fig. 1; es decir, las regiones de Valparaiso (V), Metropolitana (RM), O’Higgins (VI) y Maule (VII)), sugiere que, en general, los incendios seleccionan las plantaciones de manera positiva, y los bosques nativos y zonas agrícolas de manera negativa (Figura 2). Es decir, que las plantaciones se quemas más (desproporcionadamente), que el resto del paisaje, cosa que enfatiza la elevada inflamabilidad y combustibilidad de las plantaciones actuales de Chile (Figura 3). Un reciente estudio, realizado de manera independiente y utilizando datos de satélite, llega a similares conclusiones [8].

Fig2_residuos_V-VIIFigura 2. Análisis de las áreas afectadas por incendios según tipos de uso (Plantaciones, Bosque nativo, matorral+pastos, y zonas agrícolas), en relación a lo disponible en cada una de las 4 regiones que más han ardido (V, RM, VI, VII; ver Figura 1). Los datos positivos, significan que el fuego ha seleccionado de manera positiva ese tipo de uso (se ha quemado más de lo esperado por la superficie que ocupa); los datos negativos indican que el fuego tiende a evitar ese tipo de uso. Por ejemplo, en la Región Metropolitana (RM, en verde) se ha quemado más o menos lo que se espera según las proporciones en paisaje de plantaciones y nativo (valores cercanos a 0). En cambio, el las demás regiones, hay una fuerte tendencia a que las plantaciones se quemen más de lo esperado según su abundancia en el paisaje (valores positivos), mientras que los bosques nativos, el matorral, o las zonas agrícolas se queman de manera similar o menos de lo esperado según su abundancia (valores negativos). La región VII (Maule) es la más extrema en selección positiva de plantaciones y negativa del resto de usos, y es la región donde más superficie ha sido afectada (Fig. 1). Elaboración propia a partir de datos oficiales de SIDCO-CONAF (Chile).

 

Las grandes plantaciones forestales de Chile pueden haber sido económicamente rentables, y haber contribuido a la economía del país, pero todo indica que son social y ecológicamente poco apropiadas (véase vídeo ilustrativo, abajo). Da la impresión que la política forestal de Chile está pensada en una época con una escala de valores y un clima del pasado. Dada la importancia de la industria forestal en Chile, la política forestal requiere actualizarse urgentemente, considerando el cambio climático, los incendios, y la calidad de vida de la población local.

 

Peumo-Eucaliptos
Figura 3. Impacto de un incendio cerca de Penco (Región del Bío-Bío), donde alternan plantaciones y bosque nativo. En primer plano, un peumo (Cryptocarya alba, especie del bosque nativo) parcialmente afectado. Foto: Fernando Saenger.

 

Referencias

[1] Wildfires in Chile and Argentina, Global Fire Monitoring Center

[2] Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press

[3] Todos los días de enero las temperaturas superaron los 30 ºC

[4] Escenario favorable para incendios

[5] Peña-Fernánde F. & Valenzuela-Palma, L. 2008. Incremento de los incendios forestales en bosques naturales y plantaciones forestales en Chile. En: González-Cabán, Armando, Coord. 2008. Proceedings of the second international symposium on fire economics, planning, and policy: a global view. Gen. Tech. Rep. PSW-GTR-208, Albany, CA [PDF en: español | inglés]

[6] Invasión de especies pirófitas en Chile con financiamento estatal, el mostrador 24/1/2017

[7] Plantaciones forestales e incendios, 27/1/2017

[8] Primer estudio satelital muestra que más de la mitad de lo quemado corresponde a plantaciones forestales

Más información sobre: incendios en Chile |

UPDATE: Declaración de MEDECOS sobre los incendios de ChileEspañol | English

UPDATE: Chile 2017 fires: fire-prone forest plantations

 

 

Fire and alien plants

November 25th, 2010 No comments

In Mediterranean Basin ecosystems, fires are frequent, and post-fire regeneration is tipically based on native species, that is, there is no invasion of alien species after fire. However, this is not the case in the other Mediterranean climatic regions, where fire frequencies higher than their natural (historic) fire regime favors the invasion of alien plants. This is specially the case in the Mediterranean ecosystems of Chile, where recurrent fires play a little role on the evolutionary history. In Chile, fires appeared with the indigenous settlements, and increased exponentially since the time of the Spanish invasion (1536). This increase in fires, together with heavy grazing, has reduced the native matorral and increased the invasive species. In a recent paper, Gómez-Gonzalez et al. [1] show that fire open the window for the establishment of annual plants, and most of them are alien (from the Mediterranean Basin). The successful establishment of alien annuals was due to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species (annuals or perennials). Thus the results demonstrate that fire is a relevant factor for the maintenance of alien-dominated grasslands in the Chilean matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasions patterns in fire-prone ecosystems.

[1] Gómez-González S, Torres-Díaz C., Valencia G, Torres-Morales P, Cavieres L.A., and Pausas J.G (in press). Anthropogenic fires increase alien and native annual species in the Chilean coastal matorral. Diversity and Distributions 17: 58-67 [doi | pdf]

invasion-fumaria_sm
Figure: Chilean matorral recently burnt showing the invasion of Fumaria capreolata (flowering), and annual alien species original from Europe (Foto by S. Gómez-González).