Archive

Posts Tagged ‘fire’

Seed dormancy release and summer temperatures

February 18th, 2024 No comments

In Mediterranean ecosystems, fire breaks the dormancy in many species and stimulates germination in the postfire environment [1]. Both the smoke and the heat of the fire may be responsible for breaking dormancy [1]. Cistaceae species are typical examples of species with this heat-released dormancy [1, 2], together with many legumes. Despite fire is a much more powerful driver of dormancy release than the summer heat (figure 9 in [1] and figure 2 in [2]), there are still people aiming to demonstrate the role of summer temperatures in dormancy release in Cistaceae. A recent research team studied the germination of 12 Cistacea species and compared the effect of fire-type heat in seeds submitted to a summer heat treatment (50/20o C for a month) and in seeds without this summer treatment [3]. They concluded that high summer temperatures are needed for maximum germination in the presence of fire [3]. A reanalysis of their data suggests that not only are summer temperatures inefficient at releasing dormancy, but they also reduce postfire germination [4]. The applied summer heat treatment reduced the germination (%) in the control (H-) and in all fire treatments, and for all species (Fig. 1 below). And for the seeds that germinate, those under summer heat tended to germinate slower than those that did not suffer the summer heat (Fig. 2 below). In conclusion, fire increases the germination of Cistaceae seeds in contrast to summer-type heat, i.e., the great fitness benefits of fire are unmatched by the summer heat [4].

Fig. 1. Germination with no summer heat (x-axis; ~ 20o C for a month) and with summer heat (y-axis, 50/20o C altering for 12 h, and during a month) in 12 Cistaceae species with different fire treatments. All fire heat treatments were 100o C for 10 min applied as follows: H-, no fire heat (black); HB, fire heat before summer (green); HA, fire heat treatment after summer (red); HBA, fire heat before and after the summer (unrealistic scenario; blue). The results suggest that applying a strong summer heat treatment (52/20o C for a month) reduces the germination (%) in the control (H-) and in all fire treatments and for all species. From [4].


Fig. 2. Number of days to the first germination (T0, left) and to reach 50% of the final germination (T50, right) with no summer heat (x-axis, control) and with summer heat (y-axis, treatment), and with different fire treatments (colors; see figure above) for 12 Cistacea species (12 points for each color). The results suggest that summer heat, if any, tends to increase the time to germination.

References

[1] Pausas J.G. & Lamont B.B. 2022. Fire-released seed dormancy – a global synthesis. Biological Reviews 97: 1612-1639.  [doi | pdf | supp. mat. | data (figshare)]

[2] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(12): e51523. [doi | plos | pdf]

[3] Luna B, Piñas-Bonilla P, Zavala G, Pérez B. 2023. Timing of fire during summer determines seed germination in Mediterranean Cistaceae. Fire Ecology 19: 52.

[4] Lamont BB, Burrows GR, Pausas JG 2024. Fire-type heat increases the germination of Cistaceae seeds in contrast to summer heat. Fire Ecology 20:14 [doi | pdf]

More on seed dormancy: A review | a glossary | bet-hedging & best-bet | smoke-released dormancy 

The geological history of fire

December 19th, 2023 No comments

Fire is unique to Earth; it is a characteristic of our planet. As far as we know, no other planet has fire. Here is a video explaining the geological history of fire, including its relation to the evolution of pines and grasses. It concludes that “without fire, there would probably be no grasslands and the forest of the world would likely have a lot less diversity“. By PBS Eons.

References

  • Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | OUP | pdf]
  • He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

POSTDIV: Postfire biodiversity database

December 10th, 2023 No comments

In the summer of 2012, two wildfires affected Mediterranean ecosystems in the eastern Iberian Peninsula, the Andilla fire and the Cortes fire [1]. The size of these fires (> 20,000 ha each) was at the extreme of the historical variability (megafires sensus [2]). In 2013, we set up 12 plots per fire, covering burned vegetation at different distances from the fire perimeter and unburned vegetation. In each plot, we followed the postfire recovery of arthropods, reptiles (including their ectoparasites), and plants for 2 to 5 years. Here we present the resulting database (POSTDIV) of taxon occurrence and abundance in the burned and unburned areas [3]. Currently, POSTDIV totals 19,906 records for 457 arthropod taxa (113,681 individuals), 12 reptile taxa (503 individuals), 4 reptile parasites (234 individuals), and 518 plant taxa (cover-abundance). We provide examples in the R language to query the database.

Wildfires 2012
The two wildfires occurred simultaneously in Valencia during the 2012 summer (photo: 30 Junio 2012).
POSTDIV database structure. The database is composed of six data tables (blue boxes). For more details, see [3].

References

[1] Pausas J.G. 2012. Life 15 days after the large fires in Valencia. jgpausas.blogs.uv.es/2012/07/22/

[2] Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Front. Ecol. Environ. 19: 387-395. [doi | wiley | pdf]

[3] Pausas et al. 2023. Postfire biodiversity database for eastern Iberia. Sci Data 10:872 [doi | pdf | pdf | data: figshare

Entrevista

October 19th, 2023 No comments

En 2021, “The Emergency Program” (www.emerprogram.com) me hizo una entrevista. Aquí la entrevista dividida en 5 videos (sin editar; duración en minutos:segundos):

  1. Regímenes de incendios sostenibles, 8:30 [youtube]
  2. Quemas prescritas, 5:04 [youtube]
  3. Regímenes de incendios y estrategias de las plantas, 15:50 [youtube]
  4. Cambios en los regímenes de incendios, regeneración, y biodiversidad [youtube]
  5. Cambio climático e incendios forestales, 3:18 [youtube]

Conferencia: Incendios y biodiversidad

September 17th, 2023 No comments

El día 16 de septiembre de 2023 impartí una conferencia titulada ‘Incendios forestales y biodiversidad’ en la sede de Ecologistas en Acción (Madrid). Aquí está disponible (incluye la sesión de preguntas al final).

The history of evolutionary fire ecology

August 9th, 2023 No comments

Evolutionary fire ecology is a relatively young discipline. The idea that fire acts as an evolutionary force contributing to shaping species traits started a century ago, but has not been widely recognized until very recently. Among the first to realize this force include E.B. Paulon, R.D. Guthrie, and E.V. Komarek in animals, and W.L. Jepson, W.W. Hough, T.M. Harris, P.V. Wells and R.W. Mutch in plants (all earlier than 1970). Our recent paper [1] is a tribute to these researchers that were ahead of their time in their evolutionary thinking.

Since them, evolutionary fire ecology has percolated very slowly into the mainstream ecology and evolutionary biology; in fact, this topic is still seldom mentioned in textbooks of ecology or evolution. Currently, there is plenty of evidence suggesting that we cannot understand the biodiversity of our planet without considering the key evolutionary role of fire [2]. We also provide thoughts on future direction of this discipline.

Traits mentioned in the article as potential adaptive to fire-prone environments are [1]:

  • Traits that enhance survival
    Resprouting traits (plant survival): Root crown, Lignotuber, Woody rhizomes, Epicormic resprouting, Sunken stem buds, Smoke-induced nutrient translocation
    Stem survival: Thick (outer) bark, Reduced flammability
  • Traits that enhance reproduction and recruitment
    Heat-released dormancy, Smoke-released dormancy, Seed traits enhancing seed survival, Serotiny, Fire-stimulated flowering, Increased flammability (chemically or structurally), Precocity (ie early reproduction), Elaiosomes (ant-dispersal)

In our search for early researchers with an evolutionary view of fire [1], we may have missed some women and non-English speaker researchers; if so, we would appreciate feedback on such omissions.

Figure 1. Two of the manzanitas from Jepson (1916, Madroño 1:3-12): Arctostaphylos glandulosa (left) and Arctostaphylos nummularia (right). The former is an obligate resprouter (note the basal burl) and the latter is an obligate seeder (note the even-aged cohort). Manzanitas were among the first plants that made scientists think about the role of fire in plant evolution.

[1] Pausas JG & Keeley JE. 2023. Evolutionary fire ecology: an historical account and future directions. BioScience. [doi | pdf]

[2] Keeley JE & Pausas JG. 2022. Evolutionary ecology of fire. Ann Rev Ecol, Evol, Syst 53: 203-225. [doi |eprint | pdf]

Lizards hear wildfires

January 9th, 2023 No comments

In 2021 we described that some lizards can detect wildfires by smelling the smoke, and in this way they can react quickly, e.g., by moving to a safe place [1]. Specifically we performed that study with the mediterranean lizard Psammodromus algirus, from eastern Spain. In a recent paper, we suggest that some lizards are able to recognise wildfires by their sound! [2]. This study was performed with another mediterranean lizard, Sceloporus occidentalis (western fence lizard), from southern California.

Western fence lizard (Sceloporus occidentalis), from southern California.. Photo: L. Álvarez-Ruiz

References

[1] Álvarez-Ruiz L, Belliure J, Pausas JG. 2021. Fire-driven behavioral response to smoke in a Mediterranean lizard. Behavioral Ecology 32: 662–667. [doi | oup | data:dryadpdf] – blog

[2] Álvarez-Ruiz L, Pausas JG, Blumstein DT, Putmanb BJ. 2023. Lizards’ response to the sound of fire is modified by fire history. Animal Behaviour 196: 91–102. [doi | sciencedirect | pdf]

More on: fire & lizards  and  fire & fauna

Fire response of Bonelli’s eagle

September 30th, 2022 No comments

There is still little information on the response of many animals to fire [1, 2], and this limited knowledge is even more important for large predators (e.g. raptors) as their behavior in relation to fire are not easy to observe. We studied the fire response to a Bonelli’s eagle (Aquila fasciata) thanks to a serendipity event: a wildfire (Artana fire; eastern Spain) occurred in an area where friends of mine had an eagle being tracked by a GPS/GMS [3]. This allowed us to follow their behavior during the fire, compare it with both before and after the fire (during two years), and with other neighbor eagles that were also being tracked [3].

The results suggest that despite the fire affected most of the eagle’s core home-range, including the nest site, its activity was hardly affected by the fire. During the fire, the eagle moved away from the fire but did not leave its home-range; she was back to the center of the home-range when the fire was still burning (at low intensity). The minor movements during the fire were probably due to the smoke or/and to the firefighters activity (which include planes). And during the two following years, the behavior of the eagle was similar the behavior when the landscape was not burned. This suggest that the eagles prey (rabbits, pigeons, small mammals) were also little affected by the fire.

An animations of the movements of the eagle in relation to the home-range and the burned area is available here.  

Bonelli’s eagle (Aquila fasciata) feeding in the Artana burned area (eastern Spain). Photo: Pascual López

References

[1] Pausas J.G., Parr C.L. 2018. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 32: 113–125. [doi | pdf]

[2] Pausas J.G. 2019. Generalized fire response strategies in plants and animals. Oikos 128: 147-153 [doi | pdf | blog1 blog2 blog3 | cover image]

[3] Morollón S. Pausas J.G., Urios V., López-López P. 2022. Wildfire response of GPS-tracked Bonelli’s eagles in eastern Spain. Int. J. Wildland Fire 31: 901-908 [ doi | ijwf | pdf | animation]

Seed dormancy, bet-hedging, and best-bet

September 2nd, 2022 No comments

Seed dormancy is a key plant characteristic that occurs among many species worldwide. One mechanism that select for seed dormancy is the bet-hedging strategy. In unpredictable environment (i.e., with high interannual variability) there is a benefit in spreading the germination over a number of years to reduce year-to-year variation in fitness but taking advantage of exceptionally good years for establishment. In those environments, seed dormancy is adaptive; each year there is a small fraction of the seed crop that germinates and the other seeds remain dormant in the soil. Because the environmental conditions of most years are poor, successful establishment only occurs in good (wet) years. Thus bet-hedging selects for seed dormancy and it is a mechanism for living in highly unpredictable environments such as arid ecosystems [1]

There is another environmental setting that also selects for seed dormancy: seasonal (predictable) climate with a dry season during which the vegetation is highly flammable and thus wildfires are frequent (e.g., mediterranean, savanna, warm temperate, and dry boreal ecosystems). In those ecosystems, seed dormancy is adaptive and fire provide both a mechanism for dormancy release (proximate cause) and conditions (postfire) optimal for germination and establishment (low competition, high resource availability, low predation, low pathogen load) that increase fitness and allow maintenance of the population (ultimate cause) [1,2]. Dormant seeds survive the passage of fire and the heat or the chemicals from the combustion (collectively called ‘smoke’ [2,3]) are the stimulus for the seed to recognize a fire gap to germinate. That is, postfire recruitment occurs in a single pulse after fire. Here selection does not favor spreading the risk of recruitment failure over many years (as in the bet-hedging strategy) but, instead, maximizes germination in a single year when conditions are optimal, after fire. We call this strategy the best-bet strategy [1] or environmental matching [2]. This strategy selects for seed dormancy to accumulates seeds in the soil seedbank but also selects for serotiny to accumulate seeds in the canopy seedbank [4]; in both cases, species recruit mostly after fire and not during the interfire period.

There is a further driver that selects for seed dormancy but it does not imply the formation of seed banks (in contrast with bet-hedging and best-bet). Many seeds have acquired seed dormancy to facilitate long-distance dispersal. The clearest example is dispersal by vertebrate frugivores (endozoochory). Frugivores consume the fruit pulp and defaecate or regurgitate the seeds far from the mother plant. This means that seeds need to resist passage through the gut and remain intact until arriving at a new microsite for germination. Thus, seeds of fleshy fruited species typically are dormant, and scarification through the gut releases their dormancy. While bet-hedging spreads germination of seeds over time, this strategy spread the seeds across the space and thus it could be viewed as a spatial bet-hedging strategy.

Figure: Schematic representation of the dynamics of seed recruitment for plants lacking seed dormancy (nondormant; top panel), and for plants with dormant seeds following the bet-hedging strategy (middle panel) and the best-bet strategy (bottom panel). The figure shows the moment of flowering (red asterisk; spring), the germination (black bars; autumn), the seed bank in autumn (empty bars), the recruitment 2 months later (green bars) and the fire (flame; summer). As an example, the seasons are considered as in the Northern Hemisphere, and vertical dotted lines are the end of the year. From [1]
Table: Main characteristics of the evolutionary strategies that select for seed dormancy and seed banks (bet-hedging, best-bet), together with the nondormant strategy.

References

[1] Pausas JG, Lamont BB, Keeley JE., Bond WJ. 2022. Bet-hedging and best-bet strategies shape seed dormancy. New Phytol. [ doi | wiley | pdf]

[2] Pausas JG. & Lamont BB. 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97: 1612-1639. [doi | pdf | supp. mat. | data (figshare)

[3] Keeley JE & Pausas JG. 2018. Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African J. Bot. 115: 251-255. [doi | pdf]  

[4] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Rev. Pl. Sci. 39:140-172. [doi | pdf | suppl.]

Incendios, clima y paisaje, o de cómo adaptarnos a la nueva realidad

August 1st, 2022 No comments

Una versión un poco simplificada de este texto se publicó en TheConversation (18/7/2022), en elDiario.es (19/7/2022), en elPeriodico (2/8/2022), entre otros periódicos, bajo el título “Cómo adaptarnos a la nueva realidad de incendios”. También se ha publicado en inglés en Mednight (3/8/2022): “Adapting to the new reality of fires”, y en portugués en Esquerda (4/8/2022): “Como nos podemos adaptar à nova realidade dos incêndios”.

Hace 40 millones de años, la Antártida estaba cubierta de grandes bosques. Y hace 25 000 años, media Europa estaba cubierta de hielo y la otra media eran estepas frías. Gracias a la paleontología hoy sabemos que la vegetación de todo el mundo ha ido cambiando según han ido sucediendo cambios climáticos. La vegetación y el clima están ligados, ya lo decía Humboldt (1769–1859), y es una de las primeras lecciones de ecología.

Si ahora, con nuestra inacción climática (fig. 1), hemos aceptado que cambie el clima, debemos aceptar también que cambie la vegetación. Es iluso querer conservar la vegetación del siglo XX con el clima del siglo XXI. Igualmente, la gestión forestal del siglo XXI no puede ser como la del siglo XX, cuando el clima era menos árido.

Fig. 1. Inacción climática. Concentración de CO₂ en la atmósfera (en ppm) a lo largo de los años (de 1960 a 2020). En colores se muestra el incremento de temperaturas a escala global (climate stripes). También se indican las diferentes reuniones internacionales realizadas para debatir sobre el cambio climático, y lo poco útiles que han sido. Tadzio Mueller / Wiebke Witt / Marius Hasenheit / Sustentio, CC BY

Los grandes incendios forestales

Los grandes incendios no se producen por una sola causa (el cambio climático o las plantaciones forestales). Se producen por la coincidencia de igniciones en periodos de sequía y condiciones meteorológicas adversas (olas de calor, viento), en zonas con vegetación continua y fácilmente inflamable [1, 2]. Estas zonas a menudo son matorrales y vegetación en etapas tempranas después del abandono rural (incluidos bosques jóvenes) o plantaciones densas no gestionadas apropiadamente.

El cambio climático interviene en la ecuación [2] porque extiende la estación propensa a incendios, agudiza las sequías, incrementa la mortalidad de plantas (y la biomasa seca) e incrementa la frecuencia de condiciones meteorológicas favorables a los incendios (por ejemplo, olas de calor). Pero el gran incremento de incendios que se ha dado en la historia reciente de España ha sido independiente del cambio climático, y asociado principalmente al abandono rural [3]. La disminución de la agricultura, del pastoreo y de la recolección de madera, y la falta de gestión en plantaciones forestales, generan paisajes más continuos y homogéneos donde el fuego se propaga fácilmente. En estos paisajes, el papel relativo del clima en los incendios aumenta a medida que dejamos que avance el cambio climático [2, 3].

La vegetación que aparecerá después de sequías e incendios recurrentes será diferente a la actual, porque muchas especies pueden no estar adaptadas a esos nuevos regímenes climáticos y de incendio. Presumiblemente la nueva vegetación será menos densa y menos forestal, y con cambios en la composición de especies.

Podemos dejar que las sequías y los incendios vayan adaptando los pasajes al nuevo clima. El problema es que esos grandes incendios pueden tener consecuencias sociales y económicas. Una alternativa es adelantarse a los incendios.

 

¿Qué podemos hacer?

Para evitar esos grandes incendios que perjudican a la sociedad, debemos adaptar nuestro paisaje y nuestro comportamiento a las nuevas condiciones ambientales. Esto incluye generar paisajes que sean más resilientes al régimen climático y de incendios que viene. Para ello, podemos poner en marcha estrategias como las siguientes

1. Generar paisajes heterogéneos

Las discontinuidades en el paisaje y los mosaicos agroforestales reducen la propagación de incendios. Esto es especialmente importante en zonas cercanas a las poblaciones humanas. Hay diversas estrategias para alcanzar este objetivo, por ejemplo: potenciar (con políticas de apoyo) el mundo rural, la agricultura y el pastoreo extensivo, así como el consumo de cercanía; incrementar las poblaciones de herbívoros naturales en zonas apropiadas para ello (rewilding o resilvestración); o realizar tareas de gestión forestal específicas en zonas críticas, como generar cortafuegos, quemas y pastoreo prescritos, o tratamientos y aprovechamientos silvícolas.

Todas estas herramientas no son excluyentes; se pueden combinar según las distintas características socieoconómicas y del terreno. Ciertamente, estimular el mundo rural es fácil de decir, especialmente desde el mundo urbano. Pero en España, por ejemplo, no es evidente que haya suficiente población dispuesta a volver a la vida rural como para generar un cambio significativo en el paisaje. Quizás podría ayudar una política de inmigración que ofreciera esa posibilidad a personas que llegan en busca de condiciones mejores a las que se dan en sus países de origen.

Fig. 2. Paisaje en la zona de Gátova (Valencia) después de un incendio en el verano de 2017. Alternar cultivos en zonas de monte (mosaicos agroforestales) ayuda a frenar su propagación. Foto: Juli G. Pausas,

2. Aprender a convivir con los incendios

Eliminar los incendios de nuestros paisajes es imposible y contraproducente [4], especialmente en el marco del cambio climático. El reto de la gestión es crear condiciones que generen regímenes de incendios sostenibles tanto ecológica como socialmente.

Enfocar las políticas de gestión de incendios únicamente a la extinción puede generar incendios grandes e intensos. Es más sostenible tener muchos incendios pequeños y poco intensos, que pocos incendios de grandes dimensiones e intensos.

Para alcanzar estos objetivos se requiere profesionalizar a los actores que intervienen en la prevención y extinción de los incendios forestales. Son ellos quienes pueden generar los regímenes de incendios sostenibles, pero en muchas ocasiones trabajan en condiciones precarias.

3. Minimizar y asumir riesgos

Debemos evitar construir viviendas e infraestructuras en zonas con bosque mediterráneo altamente inflamable y reducir al máximo la interfaz urbano-forestal. Esto no solo reduce el peligro para las personas e infraestructuras, también reduce las igniciones. Entre los mecanismos para conseguirlo se incluyen la recalificación de terrenos (a no urbanizables o incluso a agrícola) y la implementación de tasas (disuasorias) por construir en áreas con alto riesgo de incendios (pirotasas), entre otras.

En zonas ya construidas, es necesario asegurar que se realizan tareas de autoprotección, como la implementación de franjas de seguridad con poca vegetación (o con cultivos) alrededor de las viviendas, o incluso implementar sistemas de riego prescrito. Es importante asegurar que las viviendas tengan seguro contra incendios forestales, y que no esperen que los bomberos necesariamente las protejan. Hay que asumir riesgos, responsabilidades y costes si se desea vivir en medio de paisajes altamente inflamables en lugar de en una zona urbana.

Durante olas de calor, sería conveniente reducir la movilidad en el monte y en zonas de interfaz (urbano-forestal y agrícola-forestal) para minimizar el riesgo de igniciones.

Fig. 3. Ejemplo de interfaz urbano-forestal en un paisaje altamente inflamable en la Costa Brava (Platja d’Aro, Barcelona). Viviendas en una matriz forestal altamente inflamable como es este caso pronto o tarde se verán afectadas por un incendio; es cuestión de tiempo. Google Maps

4. Conservar los bosques y los humedales

Debemos conservar y restaurar los bosques en los microhábitats húmedos (refugios), para incrementar su resiliencia a los cambios en el clima.

Hay que potenciar la restauración de humedales y otros ecosistemas litorales que, aparte de los beneficios para la biodiversidad, mantienen el ciclo del agua y contribuyen a la conservación del clima [5].

La degradación de la costa (por la desecación de los humedales y la sobreurbanización) contribuye a la reducción de la precipitación [5] y al incremento de gases de efecto invernadero (vapor de agua) [5]. Potenciar vegetación en zonas urbanas (jardines, árboles en las calles) también contribuye a la conservación del clima, además de mejorar la calidad de vida de los ciudadanos (¡ninguna calle sin árboles!).

5. Restaurar con especies vegetales más resistentes

La restauración del s. XX se basaba en imitar ecosistemas del pasado. En el s. XXI, la restauración no ha de tener como referencia el pasado, sino el futuro. En proyectos de restauración y en plantaciones, se deben utilizar especies (o poblaciones de las mismas especies) más resistentes a la sequía y a los incendios que las que había con anterioridad [6]. Por ejemplo, especies y poblaciones que actualmente se encuentran en zonas más secas o con más actividad de incendios. Esto sería más sostenible que utilizar las estaciones de alta calidad forestal que se utilizaban con el clima del siglo pasado.

6. Reducir el consumo de combustibles fósiles

Esto es clave para frenar el aumento de gases de efecto invernadero, y así reducir la velocidad del cambio climático y la frecuencia de las olas de calor.

 

En conclusión

Este verano tenemos grandes incendios principalmente en el oeste del Mediterráneo, y el verano pasado los tuvimos en el este, acorde con la distribución de las olas de calor de cada año. No hay ninguna novedad ni sorpresa en ello. Hemos decidido cambiar el clima (fig. 1) y por lo tanto, la vegetación se está ajustando a ese nuevo clima. Está todo dentro de lo esperado si seguimos sin adaptar el paisaje y nuestro comportamiento a las nuevas condiciones del siglo XXI. El fuego y las sequías lo hacen por nosotros.

 

Referencias

[1] Pausas J.G. 2021. Incendios forestales: no todo es cambio climático. ; El Diario, LaMarea 19 agosto 2021 TheConversation.com (18 agosto 2021),  elDiario.es (19 agosto 2021),  laMarea.com, jgpausas.blog

[2] Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Front. Ecol. Environ. 19: 387-395. [doi | wiley | pdf | brief for managers]

[3] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

[4] Pausas J.G. 2017. Acabar con los incendios es antinatural e insostenible. 20minutos (Ciencia para llevar), 13 Julio 2017. [20minutos]

[5] Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 96:143-151. [doi | oup | blog | pdf]

[6] Leverkus AB, Thorn S, Gustafsson L, Noss R, Müller J, Pausas JG, Lindenmayer D. 2021. Environmental policies to cope with novel disturbance regimes: steps to address a world scientists’ warning to humanity. Environ. Res. Lett. 16: 021003. [doi | pdf]

Fuego y brezales

June 30th, 2022 No comments

Video sobre la importancia del fuego en los brezales andaluces, esos matorrales mediterráneos dominados por brezo (Calluna vulgaris) en suelos pobres en nutrientes. Gran parte de las especies de plantas de estos brezales necesitan incendios para reproducirse.

Realizado por Guillermo Ojeda, con la colaboración de Fernando Ojeda, Susana Gómez, Universidad de Cádiz, Plan INFOCA, Parque Natural de los Alcornocales, etc.

Fire in mediterranean heathlands

Prescribed burns in Valencia

May 31st, 2022 No comments

Prescribed burns has only been introduced in the Valencia region (eastern Iberia) very recently (end of 2019), and are undertaken by the Valencia government. One of the first burns was performed Castell de Castells (Alacant province) in March 2021, it was of relatively low intensity (compare with natural wildfires in the area). The area was dominated by a mediterranean shrublands with few young pines (P. halepensis). One year latter the area is a paradise of flowers; below are a few of them. Thank you to J. Fabado and X. Riera (Jardí Botànic de Valencia) for their help in the species names.

Castell de Castells burn, March 2021
Castell de Castells, May 2022
First row: Reseda (alba) valentina, Tulipa australis, Sarcocapnos enneaphylla / Second row: Linaria_depauperata, Teucrium homotrichum_ronniger, Neotinea_maculata / Third row: Argyrolobium zanonii, Phlomis lychnitis, Teucrium pseudochamaepitys / Fourth row: Anagallis arvensis, Asphodelus cerasiferous, Aphyllantes monspeliensis. Photos by JG Pausas except Linaria by B. Moreira.

Conferencia

November 13th, 2021 No comments

El pasado día 10 de noviembre impartí una conferencia titulada ‘Fuego: Incendios y biodiversidad’ en la delegación del CSIC de Valencia, con motivo de la celebración de los 25 años del CIDE (Centro de Investigaciones sobre Desertificación). Aquí la tenéis disponible.

hora:minuto

0:00 a 0:04 – Presentación por el director del CIDE
0:04 a 0:47 – Conferencia propiamente dicha
0:47 a 1:24 – Preguntas del público

Podéis ver otros vídeos con charlas y entrevistas en mi web y en otras entradas de este blog: entrevistas (2021), charla IVIA (2017,) fragmentos de documentales, documental ‘La huella del fuego’ (TVE 2016), documental en ‘el cazador de cerebros’ (La2 TVE 2020).

Entrevista

May 11th, 2021 No comments

Aquí una entrevista en la que explico es qué trabajamos, y claro, hablo de incendios forestales, biodiversidad, desertificación, la estrategia de biodiversidad de la Comisión Europea, etc.

Y a continuación otra entrevista realizada en motivo de la MedNight TV del 24 Septiembre 2021

A message from grasses

February 21st, 2021 No comments

This video provides a powerful message from grasses to the world, written and narrated by William Bond: The Untold Story of Grasses.

Grasses created an open sunlit world, rich in plants and animals.

When you support a tree planting project … Stop. Think. Are the trees restoring a forest? Or are they destroying an ancient grassland? What might be lost?

Further readings

  • Bond WJ. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford University Press.
  • Pausas JG. & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | pdf]
  • Pausas JG. & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]
  • Afforestation is not a solution to mitigate CO2 emissions [link]
  • Mythbusting forests, by WJ Bond [link]
  • https://openecosystems.co.za/

Pinus yunnanesis

January 16th, 2021 2 comments

In the Yunnan Province of China, P. yunnanensis occurs in two growth forms: as a tree (var. yunnanensis) and as a shrub (var. pygmea) [1]. The shrubby form occurs mainly in upper slopes and ridges (Fig. 1), where soils are poor and dry, and fires are likely. This shrubby pine is very interesting and quite unique among pines: it has serotinous cones (Fig. 2), and resprouts after fire from basal buds (Fig. 3), generating multi-stemmed shrubby pine populations [1]. Serotiny is common among pines [2] while resprouting is not [3], so pines with both serotiny and resprouting are rare; and having a multi-stemmed growth form is even rarer.

Fig. 1. Pine shrubland (Pinus yunnanensis var. pygmea) in Yunnan, China. Photo C. Luo [1]
Fig. 2. Pinus yunnanensis var. pygmea showing serotinous cones, Yunnan, China. Photo: W.-H. Su [1]
Fig. 3. Pinus yunnanensis var. pygmea resprouting from basal buds after a fire, Yunnan, China. Photo: JG Pausas [1]

References

[1] Pausas JG, Su W-H, Luo C, & Shen Z. 2021. A shrubby resprouting pine with serotinous cones endemic to Southwest China. Ecology [doi | pdf]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Pl. Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

Wildfires in art: paintings II

December 31st, 2020 1 comment

I’m compiling paintings about wildfires and burned landscapes. Here some examples (click the picture to enlarge it). More examples are welcome! (email), thanks!

The painters

George Catlin (1796–1872, USA)
Fred Williams (1927–1982, Australia)
Cota Marqués (Spain): painted during the lockdown  2020
Philip Juras (Southeast USA)
Donald Ramsay (Australia)
Josep Serra Tarragón (Spain)

More at: Paintings of wildfires and burned landscapes | Wildfires in art: paintings I

     

Hummingbirds and wildfires

October 6th, 2020 No comments

Hummingbirds are among the most iconic birds of America, especially abundant in the tropics. They are very important pollinators (nectar feeders), thus their abundance and distribution are likely to affect hummingbird-pollinated plants, many of which are endemic or endangered. A recent review in western United States [1] suggests that most hummingbird species respond positively to wild or prescribed fire and thus, for the conservation of these emblematic birds, it is important to promote landscape mosaics, with early and mid postfire successional habitats, together with forest patches.

Here is a video by Contreras-Martínez et al. on hummingbirds and wildfires in Sierra de Manantlán Biosphere Reserve, Mexico [2]. The video is in Spanish; hummingbirds are ‘colibríes’ or ‘picaflores’

Grandes Guerreros: Colibríes y Fuego

Créditos del vídeo:
Filmación y Edición: Carlos Armando Pacheco Contreras (Vidacinema)
Productor: Sarahy Contreras Martínez
Guión: Sarahy Contreras Martínez, Carlos Armando Pacheco Contreras & Oscar Cárdenas Hernández
Narración: Cesar Híjar Tejada
Investigación Científica: Sarahy Contreras Martínez (Colibríes) & Enrique Jardel Peláez (Fuego)
Música Original: Erick Ríos Vázquez
Mezcla de audio: Sognare Estudios
Also available at: https://www.facebook.com/watch/?v=869506306897201

References
[1] Alexander JD, Williams EJ, Gillespie CR, Contreras-Martínez S & Finch DM. 2020. Effects of restoration and fire on habitats and populations of western hummingbirds: A literature review. Gen. Tech. Rep. RMRS-GTR-408. Fort Collins, CO, USDA, https://www.fs.usda.gov/treesearch/pubs/59664

[2] Pausas JG 2016. Flammable Mexico. Internat. J. Wildland Fire 25: 711-713. [doi | pdf ]

[3] Other related videos: Burning for biodiversity | Fire & the Florida scrub | La huella del fuegoFish & fire

[4] Other post on fire & fauna | fire & pollination | fire & Mexico |

by Josep Serra, 2021

Pyrocumulonimbus and firestorms

September 30th, 2020 No comments

Meteorologists call Cumulus (Cu) to cotton-like clouds, and Cumulonimbus (Cb) to denser and bigger clouds carried by powerful upward air currents. When these clouds are originated by a fire (or a volcano), we call them pyrocumulus (PyroCu) and pyrocumulonimbus (PyroCb) clouds.

Pyrocumuloninbus (= Cumulonimbus flammagenitus) are dense towering vertical clouds carried by powerful upward air currents generated by the heat of a wildfire [1]. These fires are also called plume-dominated fires, super-heated wildfires, or wildfire-driven thunderstorms. The origin is typically tied to very high and continuous fuel loads and extreme fire weather that produces great heat and strong convection currents. In most cases, they remain in the troposphere, but when the heat produced by the fire is very high, they can cross the tropopause and inject a large amount of smoke into the stratosphere; in those cases, wildfires contribute to the global carbon and nutrients redistribution [2]. These plumes often collapse when temperatures drop with altitude and create extreme winds. That is, these high intensity fires generate feedback processes between the atmosphere and the fire that produce strong surface winds, tornadoes, and even pyrogenic lightning ignitions that further expand the fire (firestorms).

Firestorms are wildfires with extreme, sometimes erratic behavior, typically beyond the capability of fire services to contain; the term has been used to describe very different fire types such as wind-driven fires (e.g., Santa Ana wind firestorms in California) and pyrocumulonimbus plume fires [1].

Examples of pyrocumulonimbus clouds (click in the picture for enlarge it).

A: Benaixama fire, Alicante (Spain), 7/2019, by Servicio de Vigilancia de Prevención de Incendios Forestales, Observatori Caperutxo, Generalitat Valenciana.
B: Llutxent, Valencia (Spain), 8/2018, by Empar.
C: Tasmania (Australia), 2013, by Janice James.
D: Creek fire, California (US), 9/2020, by Thalia Dockery.
E: La Pampa (Argentina), 1/2018, Earth Observatory, NASA.
F: Funny river, Alaska (US), 5/2014, Earth Observatory, NASA.

References

[1] Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Front. Ecol. Environ. [doi | wiley | pdf]

[2] Pausas J.G. & Bond W.J. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35: 767-775. [doi | sciencedirect | pdf]

Serotiny: a review

June 9th, 2020 No comments

Here is a new review paper on serotiny in plants [1]. Serotiny refers to prolonged storage of seeds in woody structures (cones or fruits) on the mother plant for several growing seasons. This implies an accumulation of a canopy seed bank with seeds from different. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat of the fires opens the woody structures and thus seeds are dispersed in the post-fire bed (where resource are abundant and competition is low). There are other ways by which some cone/fruit can be opened (e.g., dry warm winds), but the number of seeds released and the chance of successful recruitment are much lower than in postfire conditions, and thus fire provides higher fitness benefits for serotinous plants than any other cue factor. This is why most serotinous plants occurs in ecosystems with frequent crown fires. Serotiny has been studied mainly in pines [2-4] and Proteaceae, but we know at least 12 families and more than 50 genera with serotinous species [1]. And there is a diversity of serotinous structures (cones and fruits) in different genera and families (Fig. 1).

Figure 1. A) Callitris (Actinostrobus) pyramidalis (Cupressaceae); B) Postfire Cupressus sempervirens (Cupressaceae); C) Cone of Pinus patula; D) Postfire cones of Pinus radiata; E) Folicles of Hakea cyclocarpa (Proteaceae); F) Hakea stenocarpa follicle; G) Follicles of H. platysperma; H) Xylomelum angustifolium (Proteaceae) follicle; I) Lambertia echinata (Proteaceae) follicle; J) Cone of Banksia lemanniana (Proteaceae); K) B. hookeriana burning; L) Postfire B. leptophylla cone; M) Cluster of capsules of Leptospermum spinescens (Myrtaceae), inset: seeds of Callistemon (Melaleuca) teretifolius; N) Elongated cluster of sessile capsules of Callistemon citrinus (Myrtaceae), + seeds of Callistemon (Melaleuca) teretifolius; O) Woody capsules of Eucalyptus todtiana (Myrtaceae), Inset: capsules of Angophora hispida (Myrtaceae); P) Spikes of Connomois parviflora (Restionaceae); Q) Protea burchellii (Proteaceae); R) fruits of Protea burchellii; S) Cone of Allocasuarina torulosus (Casuarinaceae); T) Cone of Isopogon trilobus (Proteaceae); U) Cones of Petrophile brevifolia; V) Seedlings from serotinous H. polyanthema, B. attenuata and B. hookeriana in litter microsite. For more details see [1].

References

[1] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Rev. Plant Sci. [doi | pdf]

[2] Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[3] Hernández-Serrano A, Verdú M, Santos-Del-Blanco L, Climent J, González-Martínez SC, Pausas JG. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Ann. Bot. 114: 571-577. [doi | pdf | suppl.]

[4] Castellanos MC, González-Martínez S, Pausas JG. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  

 

More on serotiny: Serotiny | Heritability of serotiny (1) | Heritability of serotiny (2): a molecular approach | Evolutionay fire ecology in pines 

Microbes, herbivores, and wildfires

May 4th, 2020 No comments

Plants are the largest biomass component of most terrestrial ecosystems, and litter decomposition is considered the dominant process by which nutrients return to plants. In a recent paper [1] we show that in terrestrial ecosystems, there are three major pathways by which plant biomass is degraded into forms that release nutrients again available to plants: microbial decomposition; vertebrate herbivory; and wildfires. These processes act at different spatial and temporal scales, have different niches, and generates different ecological and evolutionary feedbacks. The three processes can occur in a given ecosystem (competing for the same resource, biomass), but the relative importance of each varies with the micro- and macro-environmental conditions (see Figure below).

Wildfires and herbivory are two powerful biomass consumers; they generate feedback processes that maintain vegetation at states of lower biomass than would be expected from the physical environmental conditions (alternative vegetation states [2]). In addition, wildfires and herbivory also select for light-loving species with a set of adaptive traits to persist under these consumers [3,4]. That is, both herbivory and fire can influence the mix and attributes of plant species, while the mix and attributes of plants also influence the fire and grazing regimes. These ecological and evolutionary feedbacks make fire and herbivory distinct from other abiotic disturbances such as cyclones, landslides, avalanches, volcanoes, or floods, where plants may respond – but the disturbance will not change in response to these plant responses. That is, wildfires, herbivory, and microbial decomposition can be viewed as biotic processes that structure our ecosystems and the biosphere, at different temporal and spatial scales.

This holistic view in which microbes, herbivores, and wildfires play a joint role in the functioning of ecosystems contributes to a better understanding of the diversity of mechanisms regulating the biosphere.

Figure: Plant biomass and vegetation structure in terrestrial ecosystems are determined by three feedback processes: vertebrate herbivory (H), microbial decomposition (D), and wildfires (W). These three processes also interact with each other (e.g., competition for biomass; but positive interactions also exist). Relative importance of each of the three ecosystem pathways varies in the environmental space (niche), here defined by the water availability and soil fertility. Illustration by Dharmaberen Studio. From [1].

References

[1] Pausas J.G. & Bond W.J. 2020. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. & Evol. [doi | pdf]

[2] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[3] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]  

[4] Bond, W. J. 2019. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford University Press.

 

Megafauna history shapes plants

April 24th, 2020 No comments

The role of large herbivores in explaining broad-scale ecological pattern has probably been underestimated [1]. For instance, they are important in maintaining many landscapes and biomes across the world [2]. In a recent paper we show that the different history of megafauna abundance and extinctions in different continents has shaped the dominance of many plant traits [3]. Tropical Africa (paelotropics) and tropical South America (neotropics) are a clear example of contrasting megafauna history under similar environmental conditions. By comparing plant traits of woody species in different biomes (savannas and forests) and for the two different continents, we found that continent explain better the differences in plant traits than biome, climate, or soil, and that the differences between continents are consistent with the higher impact of large vertebrates in Africa than in South America. For instance, plants in African savannas tend to be more thorny and to have higher wood density, i.e., traits related to defense against megaherbivores. In contrast, South American savannas (Cerrado) harbor more species with underground bud banks (geoxyles [4]), and thicker protective barks, i.e., traits related to protect from wildfires [4,5].

Megafauna was certainly present in South America before the Holocene overkilling by humans, however, it is unlikely they live in the brazilian savannas (cerrado); their weak and vulnerable stems (low height growth, low wood density, and lack of spines), are unlikely to have evolved in regions with abundant browsers. We hypotheses that megafauna in South America was distributed in: 1) an open version of the current seasonally dry tropical forests (SDTF, e.g., Chaco) as the proportion of thorny species is similar to African savannas (and much higher than the cerrado); and 2) the subtropical grasslands, as they currently need to be maintained by humans due to the missing megaherbivores (landscape anachronism [1]).

Overall our results suggest that variation in plant traits in the tropics is unlikely to be fully understood without considering historical factors, especially the direct and indirect impacts of megafauna. Looking at plants and thinking on their megafauna history may provide novel insights for understanding vegetation patterns across the globe [1].

The effects of megafauna history (left: absence, right: present of megafauna) on plant functional traits of tropical woody species in different biomes (savannas and forests). Arrows between the dominant driver(s) (boxes) and traits (circles) indicate positive (blue) and negative (red) effects. From [3]

References

[1] Pausas JG & Bond WJ. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]

[2] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25: 250-263. [doi | sciencedirect | cell | pdf]

[3] Dantas V & Pausas JG. 2020. Megafauna biogeography explains plant functional trait variability in the tropics. Glob. Ecol. & Biogeogr. [doi | pdf | data:dryad]

[4] Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B & Fidelis A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217: 1435–1448. [doi | pdf | suppl. | BBB database]

[5] Pausas JG. 2017. Bark thickness and fire regime: another twist. New Phytol. 213: 13-15. [doi | wiley | pdf]  &  Pausas, J.G. 2015. Bark thickness and fire regime. Funct. Ecol. 29:317-327. [doi | pdf | suppl.]

Australian fires 2019/20

January 12th, 2020 No comments

Australia is a very flammable continent, and fires have been occurring there for millions of years. As a consequence, many plants and animals have developed adaptations and strategies to cope with recurrent fires. However, the current fire season in eastern Australia is really very severe, including not only very large fires but also high intensity firestorms. SE Australia has suffered other sever fire seasons in the past (an iconic example is the Black Friday bushfires in 1939). Why is this happening now? Here I’ve compiled key figures that help us to understand it.

In the last few years, Australia has been suffering an increase in temperature; on average, each year is hotter than the previous year (Fig. 1). In fact, 2019 was the warmest years, but also the driest year (with the lowest rainfall) ever recorded. December 2019, when most fires started, was climatically an extreme (Fig. 2). During the December heatwave (Fig. 3) some meteorological station (e.g., Penrith, near Sydney) recorded temperatures over 48oC, and the record of highest average maximum temperature for Australia was broken on two consecutive days (40.7 and 41.9oC  on 17 and 18 Dec, respectively). January 4 was Canberra’s hottest day since records began (44oC). In such extreme weather conditions, ignitions easily become a wildfire (in fact, several of the wildfires started from a dry lightning), and fires spread very quickly in a vegetation that has been in a drought for many months. This generates not only huge areas burned (Fig. 4), but also very hot fires and strong uplift air columns that reach the stratosphere (pyrocumulonimbus). These are called firestorms. Firestorms produce there own winds and spread embers and the fire very fast; they even produce lightnings that generate additional wildfires. Firestorms produce extreme fire behaviour that is beyond the capacity of firefighters. In those fires, as it happens in volcanoes, the smoke reaches the stratosphere and circulates at very long distances (e.g., currently smoke from these fires has already reached South America).

The fire season has not ended yet. The ecological effects of these fires will depend on many factors (spatial variability of fire intensity, previous fires, species, etc…). The size and intensity of these fires suggest that they can have some negative consequences, but it is too early for any quantitative evaluation. Many plants are starting to resprout just few days after the fire, even under those drought conditions; some animals are leaving their hiding places, exploring the burned area, and carcasses are locally abundant suggesting patches of high animal mortality. We’ll see when will the rain come, and how plants and animals will respond. For humans, the consequences are catastrophic (fatalities, destruction of many infrastructures, smoke problems, etc.).

Fig. 1. In Australia, each year is hotter than the previous year, on average. From Australian Bureau of Meteorology
Fig. 2. December 2019 was climatically an extreme, unprecedented in relation to rainfall and temperature. Elaborated with data from Australian Bureau of Meteorology
Fig. 3. Global temperature in December 18th, 2019, as shown by Windy. Note also that part of the differences in temperature are due to the different time zones; i.e., middle of the day in Australia, night time in South America, and early morning in Africa.
Fig. 4. Major fires in south-east Australia by January 10th, 2020 (5,634,000 ha). From @eforestal [update Jan 18th: 6 millions ha]

More information:

Australian Bureau of Meteorology  | @eforestal maphub  | NSW fire service | VIC emergency | Desinformation |

Update (4/2020): For a map of the time-since-fire and fire severity across NSW fires, see: Bradstock et al. 2020, Global Change Biol., doi:10.1111/gcb.15111 (spoiler: most fires burned at relatively low severity!)

Update (2021): Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Frontiers Ecol. & Environ. 19: 387-395. [doi | wiley | pdf ]

Alternative Biome States

January 8th, 2020 No comments

There is growing interest in the application of alternative stable state (ASS) theory to explain major vegetation patterns in tropical ecosystems [1] and beyond [2]. In a recent paper [3] we introduced the theory as applied to the puzzle of non-forested (open) biomes growing in climates that are warm and wet enough to support forests (alternative biome states, ABSs; Fig. 1). Long thought to be the product of deforestation, diverse lines of evidence indicate that many open ecosystems are ancient. They have also been characterized as ‘early successional’ even where they persist for millennia. ABS is an alternative framework to that of climate determinism and succession (Table 1 below) for exploring forest/nonforest mosaics. Within climatic and edaphic constraints, consumers (fire and herbivores) can produce vastly different ecosystems from the climate potential and have done so for millions of years [4]. This framework explains not only tropical forest–savanna landscapes, but also other landscape mosaics across the globe (Fig. 2).

Fig. 1. Generalized feedback processes in fire-prone landscapes where open and closed biomes (e.g., a grassland and forest) are alternative stable states maintained by stabilizing feedbacks, while perturbations generate abrupt transitions among states (destabilizing factors). From: [3].

Fig. 2. Examples of multibiome landscape mosaics where closed forests alternate with open biomes (grasslands) that are maintained by mammal herbivory and fire. From: [3].

Table 1. Comparison of the three main dynamic processes assembling disturbance-prone communities and landscapes: classical (facilitation) succession, autosuccession, and ABS. From: [3].

References

[1] Dantas V.L., Hirota M., Oliveira R.S., Pausas J.G. 2016. Disturbance maintains alternative biome states. Ecol. Lett. 19: 12-19. [doi | wiley | pdf | suppl.]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[3] Pausas J.G. & Bond W.J. 2020. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. [doi | sciencedirect| pdf]

[4] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. 107: 1031-1037. [doi | jecol blog | jgp blog | pdf]  

Wildfires in southern Chile

November 29th, 2019 No comments

Ecosystems in southern Chile are not considered among the typical fire-prone ecosystems such as tropical savannas or mediterranean ecosystems. However, natural wildfires do occur (and has occurred since long ago), during drought periods, and are part of the ecological processes of the region. Here are some examples I have just visited.

Fitzroya cupressoides (alerce in Spanish, lahuán or lawal in Mapuche) is a shade-intolerant long-lived conifer native to the Andes of southern Chile and Argentina. Fitzroya is a monotypic genus in the cypress family. It often coexist with shade-tolerant species of Nothofagus (e.g., N. nitida). The bark of Fitzroya is relatively thick, and postfire tree survival depends on the intensity of fire; fire intensity in these ecosystems is typically patchy and some trees, especially large trees, do survive (Fig. 1 below and [1]). In fact, wildfires remove the shade-tolerant trees and open the space for Fitzroya which regenerates vegetatively (from root suckers) or from seeds coming from the surviving trees. Without wildfires, it would be hard for Fitzroya to compete with shade-tolerant broad-leaved trees.

Fig. 1. Dead and surviving Fitzroya cupressoides trees after fire in Parque Nacional Alerce Costero, Chile

Araucaria araucana (araucaria) is a conifer, considered a living fossil, native to central and southern Chile and western Argentina. It is a non-flammable tree (sensu [2]) because it typically self-prune their lower branches, the crown is quite open, it has a thick bark, and their foliage is hard and difficult to burn. This very low flammability allows Araucaria to survive even in flammable environments [2]. For instance, it occurs in shrublands of Nothofagus antartica (ñirre; see Fig. 2 below); this Nothofagus is a flammable multi-stemmed shrub that has a strong basal resprouting ability. This shrubland burn with some frequency but most Araucaria tree do not get burnt (fire can leave some scars in the trunk, see Fig. 3 below and dendroecological analysis in [3]). Araucaria araucana also growth in dens forests either as dominant tree or with other trees such as Nothofagus pumilo (lenga); such forest rarely burn and the regeneration of araucaria is based on gap dynamics. In fact, the two ecosystems (the shrublands of N. antartica, and the forests of N. pumilo) are an example of alternative biome states [4,5].

Fig. 2. Araucaria araucana growing in a shurbland of Nothofagus antartica (ñirre) in the foothills of the Lanín volcano, Chile
Fig. 3. Fire scars in three araucaria alive trees in the foothills of the Lanín volcano, Chile

References

[1] Lara A, Fraver S, Aravena JC & Wolodarsky-Franke A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience, 6, 100-109.

[2] Pausas JG, Keeley JE, Schwilk DW. 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105: 289-297. [doi | wiley | pdf]
[post-1 | post-2]

[3] González ME, Veblen TT & Sibold JS. 2005. Fire history of Araucaria–Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32:1187-1202.

[4] Pausas JG. 2015. Alternative fire-driven vegetation states. J. Veget. Sci. 26:4-6. [doi | pdf | suppl.]

[5] Pausas JG & Bond WJ. 2020. Alternative biome states in terrestrial ecosystems. Trend Plant Sci. [postprint]

 

Fish and fire

September 12th, 2019 No comments

Are the fish adapted to fire? How can fish benefit from wildfire? The answer is in this 5-minute video.

For more information on animal adaptations to wildfires see:

Pausas J.G., Parr C.L. 2018. Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology 32: 113–125. [doi | pdf]

Pausas J.G. 2019. Generalized fire response strategies in plants and animals. Oikos 128: 147-153 [doi | pdf | blog1 blog2 blog3]

 

Fire as a key driver of Earth’s biodiversity

July 12th, 2019 2 comments

Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire is likely a major driver of their diversity. In a recent paper [1] we reviewed the mechanisms that enable fire to act as a major ecological and evolutionary force that promotes and maintains biodiversity over different spatiotemporal scales. Specifically, we reviewed the different components of fire regime, the diversity through time (postfire), the intermediate disturbance hypothesis, the pyrodiversity-begets-biodiversity hypothesis, the fire-driven evolution and diversification, and the mutagenic effect of fire.

From an ecological perspective, the vegetation, topography and local weather conditions during a fire generate a landscape with spatial and temporal variation in fire-related patches (pyrodiversity), and these produce the biotic and environmental heterogeneity that drives biodiversity across local, regional and global scales scales [2]. We show that biodiversity should peak at moderately high levels of pyrodiversity. Overall species richness is typically greatest immediately after fire and declines monotonically over time, with postfire successional pathways dictated by animal habitat preferences and varying lifespans among resident plants.

From an evolutionary perspective, fire drives population turnover and diversification by promoting a wide range of adaptive responses to particular fire regimes [3,4]. In addition, fire and its byproducts may have direct mutagenic effects, contributing to the formation of novel genotypes that can lead to trait innovation. As a consequence of all these processes, the number of species in fire-prone lineages is often much higher than that in their non-fire-prone sister lineages.

Figure 1: The six components that define an individual fire event (in red the two core components). The fire regime arises from repeated patterns (means plus variance) over time of the properties of the components for each fire. For more details, see [1].

Figure 2. Relationship between species richness (S) of a reference area (community, landscape, region) and mean fire interval (a fire regime component). For a given fire regime, there is a mosaic of patches defined by different times since the last fire (represented by black circles) about the mean time interval (central circle). For more details, see [1].

 

References

[1] He T., Lamont B.B., Pausas J.G. (2019). Fire as s key driver of Earth’s biodiversity. Biological Reviews [doi | pdf]

[2] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecol. Biogeogr. 26: 889–897. [doi | pdf | data & maps (figshare)]

[3] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | pdf]  

[4] Pausas J.G. & Keeley J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65. [doi | pdf]  

Fire promotes pollinators

June 14th, 2019 1 comment

In ecosystems with a dens vegetation, wildfires open the canopy and create an environment with more light and less competition. In such postfire conditions there is an increase in flowers, and thus, flower visitors are also likely to increase. In a recent article [1] we performed a meta-analysis to specifically evaluate the effect of fire (prescribed and wildfires) on pollinators from 65 studies in 21 countries across de globe. The overall effect of fire on abundance and richness of pollinators across all studies was positive. The positive effect was especially clear after wildfires and for the abundance and diversity of Hymenoptera (bees, wasps, etc.; the main group of pollinators), while Lepidoptera (butterflies and moths) abundance showed a negative response. Short fire intervals also showed a negative effect on pollinators. In conclusion, pollinators are not only resilient to fire, but they tend to be promoted during the first postfire years. That is, fires by increasing the number of flowers, they also increase the number of flower visitors. It is also likely that this may have a positive cascading effects on other interacting species, like seed dispersers and predators. This is one of the mechanisms by which wildfires increase diversity. Pollinations is also one of the ecosystem services that fires can provide to humans [2].

 

 

Figure:  Weighted-mean effect sizes and 95% bias-corrected confidence intervals on abundance (closed circles) and richness (open circles) of pollinator taxa. This is for wildfire only. Sample sizes for each category are shown on the right of each effect. From [1].

References

[1] Carbone L.M., Tavella J., Pausas J.G., Aguilar R. 2019. A global synthesis of fire effects on pollinators. Global Ecology & Biogeography. [doi | pdf]

[2] Pausas J.G. & Keeley J.E. 2019. Wildfires as an ecosystem service. Frontiers in Ecology and Environment 17: 289-295. [doi | pdf | post]

 

Burning for biodiversity

June 1st, 2019 No comments

Taiga alive: Burning for biodiversity conservation in the boreal forest (Sweden):

This video is also available in youtube.

More videos on burning for biodiversity are available for Australia, North Carolina, New hamphshire, Florida, … , See also, a fire ecology lesson from the Florida scrub.

 

Wildfires as an ecosystem service

May 7th, 2019 No comments

Wildfires are often viewed as destructive disturbances. In a recent paper we propose that when including both evolutionary and socioecological scales, most ecosystem fires can be understood as natural processes that provide a variety of benefits to humankind [1]. Wildfires provide open habitats that enable the evolution of a diversity of shade-intolerant plants and animals that are a source of products used by humans since long ago. Wildfires also regulate pests and catastrophic fires, contribute to the regulation of the water and carbon cycles, and could help plants in their adaptation to novel climates. That is, there are many provisioning, regulating, and cultural services that we obtain from wildfires (box below).  Prescribed fires are a tool for mimicking the ancestral role of wildfires in a highly populated world.

Figure: Schematic representation of the factors occurring at the evolutionary (green square) and at the socioecological (yellow square) scale associated with fire regimes and ecosystem services. Natural (historical) wildfire regimes create open habitats that can promote specific adaptations, biodiversity, and overall functioning in fire-prone ecosystems; these are the supporting services necessary for the production of all other services (table below). Decisions and policies may modify fire regimes (anthropogenic fire regimes) modulating ecosystem functioning and services (socioecological feedback); that is, policy decisions may switch between maintaining ecosystem services (stabilizing feedback) or generating unsustainable fire regimes (disruption of the feedback). Decisions and policies (bottom right corner) include fire and landscape management decisions, but also include socioeconomic changes that have implications on fire regimes (eg rural abandonment [2]). From [1].

Examples of ecosystem services provided by recurrent wildfires to early and to contemporary societies. For more details, see [1]:

  • Provisioning services:
    – Provide open spaces for pastures, agriculture, and hunting
    – Stimulate germination of desirable annual ‘crops’ postfire
    – Provide carbohydrates from underground plant organs
    – Provide craft and basketry material (resprouts)
    – Maintaining open spaces for grazing and hunting
    – Provide essences, medicines, flowers (ornamental)
  • Regulating services
    – Pest control for humans and livestock
    – Reduce catastrophic wildfires
    – Accelerates species replacement in changing conditions
    – Enhance flowering and pollinator activity
    – Water regulation
    – Carbon balance
  • Cultural services
    – Spiritual, inspirational
    – Ecotourism in open ecosystems
    – Recreational hunting
    – Scientific knowledge on the origin of biodiversity
    – Knowledge on ancestral fire management techniques

 

Cover of the June 2019 issue of Frontiers in Ecology & Environment (17, 6) where our papers is featured. California poppy (Eschscholzia californica) flowering postfire enhances pollination.

 

Illustrating ecosystems services by fire is not easy; here are some examples of pictures I received to potentially illustrate this paper; most of them did not finally go to the paper. Thanks to the contributes! – [click the photo to enlarge]

 

References

[1] Pausas J.G. & Keeley J.E. 2019. Wildfires as an ecosystem service. Frontiers in Ecology and Environment 17: 289-295 [doi | pdf | summary for managers]

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]  

 

Cambio climático, políticas medioambientales y gestión del territorio

April 15th, 2019 1 comment

No hay duda que el planeta está sometido a un calentamiento global causado por al incremento de CO2. Para evitar una pérdida de calidad de vida y de biodiversidad, se necesitan políticas de reducción de CO2, que se deben realizar a todos los niveles, tanto personal, como a nivel municipal, regional y global. Pero además de estas políticas de CO2, existen otras políticas locales relacionadas con la gestión del territorio, que pueden ser muy relevantes para luchar contra el cambio climático. En nuestro clima mediterráneo existen dos factores clave, el régimen de incendios y el régimen de sequías, que actualmente están siendo perturbados. En un artículo reciente [1] se propone que existen principalmente tres factores locales que determinan la actual dinámica de la vegetación y que afectan a los incendios y las sequías en nuestros ecosistemas:

a) El abandono rural en un entorno depauperado de herbívoros salvajes. Este aumenta las áreas de monte (áreas forestales), pero también la abundancia y continuidad de la vegetación, que es el combustible que alimentan los incendios forestales. Ello incrementa la probabilidad de incendios grandes e intensos y de incendios en la interfaz agrícola-forestal.

b) El incremento de la población urbana viviendo o visitando zonas semiurbanas (por ejemplo, incremento de viviendas en la interfaz urbano-forestal). La consecuencia es un incremento de: 1) la degradación de la biodiversidad (por ejemplo, incrementa la introducción de especies exóticas, la contaminación lumínica, el uso ineficiente del agua, etc.); 2) la probabilidad de incendios (más igniciones tanto accidentales como provocadas); y 3) la vulnerabilidad de la sociedad a los incendios (se ponen en peligro vidas e infraestructuras).

c) La degradación costera, que aumenta la sequía a través de procesos de retroalimentación negativa; es decir, la desecación de las marismas costeras, la deforestación para la agricultura y, más recientemente, la explosiva urbanización costera, han reducido drásticamente los ecosistemas originales (y su evapotranspiración) y, por lo tanto, el agua disponible para la brisa marina que en el pasado alimentaba las lluvias en las montañas de la costa [1].

Por lo tanto, las políticas de gestión del territorio para luchar contra el cambio climático deben enfocarse a dos objetivos principales: gestionar los incendios, y reducir las sequías; siempre evitando que la gestión afecte negativamente a la biodiversidad.

 

Figura: La perturbación de los regímenes de incendios naturales y sequías en los paisajes mediterráneos está determinada tanto por factores globales como locales. El aumento de la actividad de incendios se debe a la cantidad de combustible y la homogeneidad del paisaje generada por el abandono rural en un entorno depauperado de herbívoros y con crecientes igniciones (de origen humano) y sequías. El aumento de las condiciones secas es consecuencia del calentamiento global, pero también de las pérdidas por tormentas causadas por la perturbación del ciclo del agua generado por la degradación de los ecosistemas costeros. El incremento de población semi-urbana se refiere al incremento de población urbana viviendo en o visitando zonas de monte, incluyendo zonas de la interfaz urbano-forestal.

 

Políticas para la gestión de incendios: La tolerancia cero a los incendios no ha funcionado ni en España ni en ningún otro país; al contrario, la extinción total de los incendios genera ecosistemas con gran acumulación de biomasa que cuando arden lo hará con elevada intensidad produciendo incendios de grandes dimensiones (megaincendios). Esto es lo que se llama la paradoja de la extinción de los incendios. Por lo tanto, el reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente [2,3]. Eliminarlos es imposible, antinatural y ecológicamente insostenible [4]. Por lo tanto, en áreas cerca de zonas urbanas debe potenciarse los incendios pequeños, frecuentes, y de baja intensidad, sea aprovechando incendios naturales o realizando quemas prescritas. Además, la introducción de herbívoros, sean nativos (rewilding) o ganado, puede reducir la cantidad de combustible y por lo tanto limitar los incendios y facilitar las quemas prescritas. La gestión de los incendios también implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. Los mecanismos para limitar estas zonas pueden ser diversos, incluyendo la recalificación de terrenos (a no urbanizables), o la implementación de tasas (disuasorias) por construir en áreas con alto riesgo de incendios, entre otros. En las zonas ya urbanizadas, se requiere forzar la realización de planes de evacuación y multar la falta de autoprotección alrededor de las viviendas, de manera que se reparta la responsabilidad entre administración y propietarios.

Políticas para la conservación del clima: Una manera de reducir las sequías es potenciar el ciclo del agua que ha sido perturbado por la degradación de la costa. Esto implica, la conservación, restauración, y ampliación de la mayor zona posible de vegetación nativa en la zona más litoral, y en especial de los marjales litorales. Es decir, la conservación de los marjales litorales son importantes no solo para la conservación de la biodiversidad, sino también para la conservación del clima. Además, en las zonas urbanas y semiurbanas se debería potenciar los parques, jardines y zonas verdes con abundante vegetación, así como plantar árboles en todas las calles posibles. La evapotranspiración que realizaría toda esta vegetación (en sistemas naturales, urbanos y semiurbanos), beneficiaría al ciclo del agua y contribuiría a la conservación del clima. Además, la vegetación en zonas urbanas y semiurbanas también beneficia a la calidad de vida en muchos otros aspectos que no abordamos aquí. Dado que pequeños incrementos de temperatura en la costa tienen implicaciones en toda las montañas vecinas [1], es importante reducir el efecto ‘islas de calor’ que ejercen las zonas urbanas de la costa. Para ello, se podría potenciar el uso de materiales de construcción con elevada reflectividad en superficies horizontales (tejados, calles, patios, etc), cosa que disminuiría el efecto de calor urbano; además, las viviendas construidas con estos materiales requieren un menor uso de la calefacción. En la zona de montaña, se puede potenciar el uso de colectores de niebla para obtener agua para la agricultura o otros usos.

En conclusión, además de disminuir la concentración de CO2 en la atmósfera, existe un gran número de acciones que se pueden realizar con políticas locales, y que contribuirían en gran manera a la disminución de los efectos del calentamiento global y al aumento de la calidad de vida.

Más información en:
[1] Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 96:143-151. [doi | oup | blog | pdf]

[2] Pausas J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

[3] Pausas J.G. 2018. Incendios forestales, encrucijada natural y social. En: Ecología de la regeneración de zonas incendiadas (García Novo F., Casal M., Pausas J.G.). Academia de Ciencias Sociales y del Medio Ambiente de Andalucía. pp. 9-14. [pdf]

[4] Pausas J.G. 2017. Acabar con los incendios es antinatural e insostenible. 20minutos (Ciencia para llevar), 13 Julio 2017. [20minutos]

 

Generalized fire strategies in plants and animals (2)

February 1st, 2019 No comments

Our paper “Generalized fire response strategies in plants and animals” is the Editor’s Choice of the last Oikos issue (128:2, February 2019).

In addition, one of my pictures has been selected for the cover!

Thanks @Oikos_Journal

Description of the image: Charaxes jasius taken in the middle of a burnt area (colonizing) 10 days after the wildfire that burned with very high intensity in Òdena, Barcelona, NE Spain (August 2015). Photo: JG Pausas

 

Other journal covers using my pictures

Trends in Plant Science 22 (13)                                 Journal of Ecology 105 (2)

 

The long shadow of Humboldt

January 15th, 2019 No comments

Behind the paper “Humboldt and the reinvention of nature” [1]. Text simultaneously published here and in JEcologyBlog.com

It all started when I was reading an excellent book by Andrea Wulf entitled The Invention of Nature: Alexander von Humboldt’s New World. The book provides many details about Humboldt’s fascinating life and the wide-ranging influence he had on science and society. When reading the book, you can easily understand the unquestionable role Humboldt played in the history of ecology and biogeography. One of his many contributions to science was to set the basis for explaining how environmental factors affect species distribution; for example, he demonstrated that vegetation systematically varies across the world with climate and showed the ecological similarities between altitude and latitude.
 

Fig. 1. Vegetation of Chimborazo (Ecuador) by Humboldt and Bonpland (1807).

 
A question that came to my mind was not covered by the book; namely, to what extent does Humboldt’s view bias our vision of nature? This is relevant because many classical naturalists and ecologists, such as Henry David Thoreau, Charles Darwin, George Perkins Marsh, John Muir, Rachel Carlson, Frederic E. Clements, and Henry A. Gleason, were all inspired by Humboldt. By spreading a vision, they shaped what is today mainstream ecology and the environmental movement. The current emphasis on the role of climate and soil in many ecological and evolutionary studies, the emphasis on forests as the potential and most important vegetation, and the difficulties many researchers have accepting the ecological and evolutionary role of disturbances at broad scales, suggest that we are still largely viewing nature through the eyes of Humboldt.

After reading the book, I was lucky enough to be in London for a conference and met William Bond in a pub just next to Kew Gardens. We stayed hours talking about many things, mainly fire, grazing, alternative stable states, and all the wonders of ecosystems maintained by disturbances. Our conversation jumped from one country to the other, from one biome to the other, and from one continent to another. And when talking about the overwhelming role that many researchers attribute to the environment when explaining broad temporal and spatial vegetation patterns [2], we glimpsed the long shadow of Humboldt. That conversation in a quiet London pub was the seed of this paper (and of another to come). Talking with William is always enjoyable because of his enthusiasm, experience, and creativity.

Now that we are approaching the 250th anniversary of Humboldt’s birth, it is instructive to evaluate his legacy of climate and soil as primary factors explaining broad vegetation patterns. There is increasing evidence that many open, non-forested ecosystems (savannas, grasslands, and shrublands) cannot be predicted by climate and soil – and are ancient and diverse systems maintained by fire and/or vertebrate herbivory. Paleoecological and phylogenetic studies have shown the key role of fire and grazing at geological time scales (Fig. 2). In this paper [1], we propose moving beyond the legacy of Humboldt by embracing fire and large mammal herbivory as key factors in explaining the ecology and evolution of world vegetation. This implies understanding grasslands, savannas, and shrublands as ancient and diverse ecosystems that require conservation, including the processes that maintain them (grazing and wildfires).
 

Fig. 2. Changes of the drivers related to plant consumers (fire and herbivory), together with the evolution of different vegetation types, and some plant traits (serotiny and thick bark of pines, epicormic resprouting in eucalypts), along the evolutionary history of plants. Upper pointing triangles are peaks of O2 atmospheric concentration and fire activity; lower-pointing triangles are megafauna extinction events, also associated to fire activity peaks. Note that modern fire regimes are very recent, and at this scale they are almost a point. From [1].

 

Fig. 3. Alexander von Humboldt and Aimé Bonpland on the foot of Chimborazo, painting by Friedrich Georg Weitsch (1810)

 
References
[1] Pausas J.G. & Bond W.J. 2019. Humboldt and the reinvention of nature. J. Ecol. [doi | jecolblog | pdf]

[2] Pausas J.G. & Lamont B.B. 2018. Ecology and biogeography in 3D: the case of the Australian Proteaceae J. Biogeogr. 45: 1469-1477. [doi | pdf]
 

Global change in the Mediterranean basin

January 9th, 2019 2 comments

The paleartic region with mediterranean climate (southern Europe and northern Africa; the Mediterranean Basin; Fig. 1) is a hotspot of biodiversity, a hotspot of climate change (warming of the region is above global average), and a hotspot of human population (a highly populated area and a top tourist and retirement destination). In addition, the Mediterranean Sea is the world’s largest inland sea, and climatic disruptions in the region have consequences in the large catchment area that includes central-eastern Europe (Fig. 1). That is, environmental changes and disruptions of the water cycling in the Mediterranean region have consequences affecting a large human population [1].

Fig. 1. Area with mediterranean climate (green) and limits of the Mediterranean catchment (red).  The European catchment limit based on Cortambert (1870). From [1]; shape files available here.

The region, as all the planet, is subject to global warming. In addition there are three main local processes (not directly related to global warming) that are very important in understanding dynamic changes in the region [1]:

a) Rural abandonment in an environment depauperate of native herbivores; this increases wildlands (greening) but also the abundance and continuity of fuels that feed wildfires [2]

b) Increasing the wildland-urban interface; this increases biodiversity degradation (e.g., alien species), fire ignitions, and the vulnerability of the society to fires

c) Coastal degradation enhances drought (browning) through negative feedback processes; that is, the desiccation of coastal marshes, the deforestation for agriculture, and more recently, the explosive coastal urbanization, have drastically reduced the original ecosystems and thus the water available for the sea breeze that was once feeding the rain in the upper part of the mountains [1].

All these mechanisms act in different directions (greening, browning), and the current balance is still towards greening, as land abandonment is buffering the browning drivers; however, it is likely to switch with global warming. The challenge is to mitigate the browning processes. The good news is that the importance of small-scale drivers suggests that local policies and actions can make a difference in reducing overall impact on the landscape and society.

Mechanisms acting at a fine scale, together with global drivers (CO2 enrichment and climatic warming) interact and drive current vegetation changes in Mediterranean landscapes. Any model aiming to predict the future of our vegetation and climate must consider these local mechanisms; and failing to consider them at an appropriate scale is likely to produce inconclusive predictions.

Fig. 2. The disruption of the natural fire and drought regimes in Mediterranean landscapes is driven by global and local drivers. Increased fire activity is a response to the fuel amount and landscape homogeneity generated by rural abandonment (fire hazard) in an environment depauperated of herbivores and with increasing human ignitions (fire risk) and droughts (fire weather). The increased dry conditions are the consequence of global warming, but also of storm losses caused by the disruption of the water cycle generated by the coastal degradation. WUI: wildland-urban interface. From [1].

References

[1] Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience 69: 143-151 [doi | OUP | pdf | map (shape file)]  

[2] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]  

Every time you build anything, a highway, a school, whatever, you are altering the precipitation regime somewhere downwind” Millán M. Millán

Incendios forestales: encrucijada natural y social

December 28th, 2018 No comments

En febrero de 2018, poco después del incendio de Doñana (Las Peñuelas, 2017), la Academia de Ciencias Sociales y el Medio Ambiente de Andalucía organizó en Sevilla un seminario sobre regeneración después de incendios. A partir de ese seminario, se ha realizado un libro con algunas de las ponencias. Tuve la suerte de que me invitasen a dar la charla inaugural del seminario y a escribir un capitulo introductorio en el libro. Aquí abajo copio algunos fragmentos de mi capítulo. El texto entero del capítulo está disponible en PDF aquí. El libro entero también está disponible en PDF aquí y en en la Academia

 

Incendios

Los incendios forestales constituyen procesos complejos, a muchas escalas. Los físicos aún tienen enormes dificultades para modelar y predecir el comportamiento del fuego a escalas temporales y espaciales pequeñas, debido a la complejidad de la vegetación y las interacciones con los parámetros meteorológicos. A escalas mayores, en paisajes heterogéneos, con historia, y con personas asentadas en él, la complejidad es enorme. Prueba de ello es que el llamado ‘problema’ de los incendios forestales no está resuelto ni en nuestro país ni en ningún otro. Parte de la dificultad probablemente resida en un enfoque poco apropiado para abordar el tema. Lo más probable es que se necesite un cambio de paradigma en cuanto a cómo entendemos los incendios forestales en nuestros paisajes. Para este cambio de paradigma se requiere acumular evidencias, cultivar el pensamiento crítico, y romper algunos mitos. Aquí estamos para contribuir a ello.

Régimen de incendios

El clima mediterráneo es propenso al fuego porque tiene una vegetación densa, una estación seca, y tormentas secas (que provocan igniciones). Por lo tanto, como mínimo, hay incendios desde que tenemos clima mediterráneos (hace unos pocos millones de años), aunque hay evidencias de carbones fósiles producto de incendios desde que las plantas colonizaron el medio terrestre. A lo largo de la historia geológica el régimen de incendios ha ido cambiando, es decir, han ido cambiando características tales como la frecuencia, la intensidad, la estacionalidad, el tamaño, o el tipo de propagación. Y estos cambios han sido debidos a las variaciones a escala geológica de la concentración de oxígeno en la atmósfera, a cambios en el clima y en la vegetación, y a variaciones en la abundancia y tipo de herbívoros.

A una escala temporal más reciente (humana), los regímenes de incendios se han ido modificando según el uso del fuego, los cambios antropogénicos del paisaje, de la ganadería/pastoreo, de las políticas de gestión y, finalmente, los cambios climáticos recientes (antropogénicos). Todos estos cambios han ido modificando el régimen de incendios en diferentes direcciones, a veces de manera abrupta. Por ejemplo, el aumento de la población está asociado a un mayor número de igniciones; el incremento de la agricultura está asociado a la disminución de los incendios; y el reciente abandono rural conllevó un incremento de estos, especialmente de su tamaño. De manera que la dinámica del régimen de incendios está fuertemente ligada a cambios socio-económicos.

Adaptaciones

La larga historia de incendios ha conllevado que muchas plantas mediterráneas tengan rasgos o estrategias que les confieren supervivencia y capacidad de reproducción en ambientes con incendios recurrentes (rasgos adaptativos a los incendios). Existe una variedad de rasgos de este tipo; por ejemplo, muchas plantas rebrotan muy bien aunque se quemen totalmente, gracias a tener yemas en estructuras subterráneas protegidas por el suelo, o protegidas debajo de cortezas gruesas. Otras especies germinan de manera abundante después de los incendios, y así aprovechan la elevada disponibilidad de recursos tras el paso del fuego; y en muchos casos, estas especies aumentan su tamaño poblacional respecto al tamaño previo al incendio. Otras especies florecen rápida y abundantemente después de un fuego, aprovechando las condiciones favorables. Todo ello genera una frenética actividad de plantas y animales durante la primavera después de los incendios. La gran mayoría de plantas mediterráneas presenta alguna de estas estrategias para vivir en zonas con incendios recurrentes (ver aquí), aunque cambios bruscos en el régimen pueden conllevar problemas ecológicos.

Los bosques no son la única alternativa

Aunque la vegetación potencial de muchos ecosistemas pueda ser el bosque cerrado, la larga historia de incendios ha producido la apertura en los bosques de manera tan recurrente que han evolucionado especies típicas de matorrales abiertos que ni siquiera pueden vivir dentro del bosque. De hecho no es raro encontrar matorrales más diversos que bosques. Por lo tanto, la sociedad debería poner más en valor los ecosistemas que no son bosques, tales como los matorrales, las dehesas y los pastizales; todos ellos con una elevada diversidad en nuestro territorio. El fuego genera espacios abiertos, y da oportunidad a especies heliófilas, tanto de plantas como de animales. Sin incendios recurrentes nuestro paisajes serían más pobres en especies.

Incendios en el antropoceno

A pesar del carácter natural y antiguo de los incendios, el incremento de igniciones (aumento de la población urbana en ambientes semi-rurales), la elevada continuidad de la vegetación (por abandono rural y falta de herbívoros), y el cambio climático, junto con la política de exclusión del máximo número de incendios, nos lleva en conjunto muy a menudo a regímenes de incendios fuera del rango histórico, donde la mayor frecuencia de incendios de grandes dimensiones podría generar problemas ecológicos y sociales. En un mundo con climas y paisajes cambiantes, la gestión de los incendios (que no la exclusión o extinción), resulta de suma importancia.

La gestión debe partir del conocimiento de que los incendios son propios de los ecosistemas mediterráneos. La política de tolerancia cero a los incendios no ha funcionado en ningún país del mundo. El reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente. Eliminarlos es imposible, antinatural y ecológicamente insostenible. Para generar esos paisajes resilientes se precisan acciones a distintos niveles, tales como aceptar abiertamente un cierto régimen de incendios, crear discontinuidades en paisajes forestales homogéneos (por ejemplo, mosaicos agrícola-forestales), o reducir el combustible (pastoreo y quemas prescritas) en zonas estratégicas o próximas a viviendas.  También implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. A los efectos ambientales que supone la expansión de estas zonas de interfaz (por ejemplo, en biodiversidad, especies invasoras, contaminación lumínica y visual, etc.), hay que añadir que constituyen una gran fuente de igniciones, y que convierten en catastróficos (socialmente) incluso a regímenes de incendios ecológicamente sostenibles.

En conclusión

Se están acumulando evidencias que sugieren que hasta ahora teníamos una visión muy incompleta y sesgada de los incendios forestales, relegándolos a un factor externo que destruye ecosistemas y genera problemas ecológicos y sociales. Los estudios realizados en los últimos años sugieren un cambio de visión, donde los incendios constituyen una característica interna de los sistemas socio-ecológicos, una perturbación natural en muchos ecosistemas y una herramienta de gestión para moldear los regímenes de incendios futuros. Por ello se requiere que aprendamos a convivir con los incendios. Este cambio de paradigma se hace más urgente con el cambio climático, ya que la actividad de incendios está aumentando, y solo se puede abordar si se integra los incendios y el fuego dentro de nuestros sistemas socio-ecológicos.

 

Lecturas relacionadas

Pausas J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082. [doi | pdf | supp]

Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

Chergui B., Fahd S., Santos X., Pausas J.G. 2018. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems 21: 619–628. [doi | pdf | post]

Pausas J.G. 2018. Incendios: cambios recientes y soluciones. jgpausas.blogs.uv.es/2018/06/19

Pausas J.G. 2018. Incendios forestales, encrucijada natural y social. En: Ecología de la regeneración de zonas incendiadas (García Novo F., Casal M., Pausas J.G.). Academia de Ciencias Sociales y del Medio Ambiente de Andalucía. pp. 9-14. [pdf | libro]

Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience. [doi | pdf]

 

Llutxent y la pérdida de suelo

October 30th, 2018 2 comments

Después de un incendio, lo peor que puede ocurrir es que haya pérdida de suelo. Por ello se aconseja visitar pronto las zonas afectadas con el fin de detectar puntos donde es posible que esto ocurra, y en su caso, poder aplicar medidas para evitarlo. En la zona mediterránea las zonas con posible pérdida de suelo suelen ser puntuales dentro del área afectada por el incendio. Estas zonas sensibles suelen estar asociadas a pendientes pronunciadas, suelos poco pedregosos, texturas arenosas, bancales abandonados, etc.. Entre las medidas para evitar la pérdida del suelo se incluye cubrir la parte sensible con paja o similar (empajado o mulching, que evita el contacto directo de las gotas de agua con el suelo), la siembra de hierbas de crecimiento rápido, o la colocación de troncos en fajas para reducir los movimientos de suelo.

En el pasado agosto ardieron unas 3200 ha en el incendio de Llutxent, afectando principalmente a los municipios de Llutxent, Gandia y Pinet (provincia de Valencia). Poco después del incendio se iniciaron acciones para proteger el suelo de la erosión, tales como la corta de pinos muertos y su colocación en el suelo en fajas. Sin embargo, estas acciones se están aplicando de forma generalizada, incluyendo zonas muy pedregosas y con poca pendiente (ver fotografías), o donde la regeneración de la vegetación es buena. En estas zonas no es previsible que haya erosión, y por lo tanto esta acción parece ecológica y económicamente innecesaria. En algunos casos, podría ser perjudicial si las acciones realizadas afectan a la regeneración natural. De hecho, con las lluvias de las semana pasadas, ya se podría evaluar si realmente ha servido para algo estas acciones y si vale la pena continuarlas.

 


Acciones que se están realizando en la zona afectada por el incendio de Lutxent (fotos tomadas en septiembre y octubre, 2018, por R. Badenes y J.G. Pausas).

 

Actualización, 27 Nov 2018: Hace unas semanas en Llutxent llovió entre 300-600 mm en pocos días, y no se ha observado erosión en sitios pedregosos y poco inclinados. A pesar de esto, se sigue aumentando las fajas para frenar la erosión … (pincha en la foto para ampliar)

 

Más información:

 

Generalized fire strategies in plants and animals

October 4th, 2018 No comments

One of the unifying approaches in ecology is to search for common strategies, that is, to group species sharing mechanisms and responses to environmental factors and disturbances. Plant strategies to persist in fire-prone ecosystems (and the traits involved) are now quite well known [1]. However, less is known about fire strategies in animals, despite many fire-prone ecosystems harbor a very rich fauna [2]. This difference in knowledge is probably due to the intrinsic differences between plants (immobile) and animals (mobile) [2]. However, there is a demand for unifying plant an animals paradigms in order to better asses biodiversity in fire-prone ecosystems [3]. In a recent paper [4] I am providing an unifying framework by emphasizing the similarities between plants and animals in relation to the mechanisms for living in fire-prone ecosystems. To do so, I propose a very simple fire strategy scheme that should be valid for both plants and animals (Table 1). The advantage of having a unified framework of fire strategies include: (1) we can learn how species respond to fire from a great diversity of life forms; (2) animal and plant ecologists can benefit from shared expertise in fire responses (some common strategies in plants may be overlooked in animals, or vice-versa); (3) we could better predict changes in plant-animal interactions with fire regime changes, and (4) we could better assess and generalize the effects of fire on biodiversity. I hope this framework would facilitate finding knowledge gaps and directing future research for gaining a better understanding of the role of fire on biodiversity.

Table 1. Generalized mechanisms of species response to fire (strategy), their fire dynamics and persistence scale, and the prevalence for animals and plants in fire prone ecosystems (low, moderate, and high). The last column refers to the fire characteristics where this strategy is most likely to occur (‘high’ and ‘low’ refers to fire intensity). [4]

 

Fig. 1. The rhea (Rhea americana) has a cryptic coloration in postfire environments, when sitting in the ground, the neck cannot be differentiated from a burned stem. Photo: JG Pausas

 

Fig. 2. Charaxes jasius colonizing the middle of a burnt area 10 days after the wildfire that burned with very high intensity in NE Spain (note that only thick branches remained). Photo: JG Pausas.

References

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [the book]  

[2] Pausas J.G., Parr C.L. 2018. Towards an understanding of the evolutionary role of fire in animals. Evolutionary Ecology 32: 113–125. [doi | pdf]  

[3] Kelly L.T., Brotons L, Giljohann K.M., McCarthy M.A., Pausas J.G., Smith A.L. 2018. Bridging the divide: integrating animal and plant paradigms to secure the future of biodiversity in fire-prone ecosystems. Fire 1(2): 29. [doi | mdpi | pdf]  

[4] Pausas J.G. 2019. Generalized fire response strategies in plants and animals. Oikos 128:147-153 [doi | wiley | pdf | oikosblog]

 

A fire ecology lesson from southern Florida

October 2nd, 2018 No comments

 

How do you teach children about fire? You show them by replacing fear with a sense of wonder. 

See also: A fire ecology lesson from the Florida scrub

 

Llutxent 1 month postfire

September 18th, 2018 No comments

In early August a wildfire ignited by a lightning burned about 3200 ha, affecting mainly the municipalities of Lutxent, Gandia and Pinet (in Valencia, Spain). One month later I visited the area, and below are the main plant species that were already resprouting. There were also two species already flowering, both geophytes: Urginea (Drimia) maritima and Scilla autumnalis; they showed flowers but not the leaves (they are protanthous: flowering before the foliage appears [1]). There were also many seedling germination from the seedbank, but they were too small to identify. 

The area affected by the fire include a small marginal population of Quercus suber (cork oak; el surar de Pinet) that we had studied few years ago [2]. This oak was also resprouting (epicormically).

(click to the photo to enlarge)

 

Notes and references

[1] The terminology of the flower/leaf phenology is a bit confusing; here is my understanding following Simpson (Plant Systematics, 2011) and Lamont & Downes (2011, Pl. Ecol. 212):

· Synanthous (syn= same time): flowers and leaves develop at the same time
· Hysteranthous: flowering occurring out of phase with leafing
· Protanthous (pro= early): flowers develop before the leaves
· Seranthous (ser= delayed): flowers develop after the leaves

[2] Pausas J.G., Ribeiro E., Dias S.G., Pons J. & Beseler C. 2006. Regeneration of a marginal Cork oak (Quercus suber) forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17: 729-738. [pdf | doi | wiley]

More on postfire flowering | Quercus suber (cork oak)

Thanks to E. Laguna for his help on the species identification.

 

Foc i germinació

August 30th, 2018 3 comments

Fa poc, la revista Mètode me va fer la següent pregunta: Per què hi ha plantes que necessiten el foc per a germinar? Ací la meua resposta: català | castellano. També la copio aquí sota, amb alguna lleugera modificació:

La finalitat de tot ésser viu és reproduir-se, i en el cas de les plantes, açò inclou que les llavors germinin en un ambient favorable per al creixement. És per açò que les plantes han desenvolupat estratègies per dipositar les seues llavors en espais oberts que permetin la germinació i el creixement de la descendència. En moltes plantes, aquestes estratègies es basen en la dispersió de les llavors per animals o pel vent. Però hi ha altres que aprofiten els espais oberts dels incendis!

En els ecosistemes mediterranis els incendis són relativament freqüents de manera natural, i generen grans espais oberts ideals per a la germinació i el creixement de moltes plantes mediterrànies (molta llum, poca competència, i elevada disponibilitat de nutrients). Conseqüentment, en moltes d’estes espècies han evolucionat estratègies per optimitzar la germinació just després del foc. Per aconseguir sincronitzar la germinació amb el moment dels espais oberts, les plantes acumulen les llavors (formen un banc de llavors) i el foc els hi fa de senyal de quan poden germinar. Hi ha dos estratègies. Una és que les plantes acumulen les llavors al sòl (banc de llavors al sòl), i la calor o el fum dels incendis fa de senyal i estimula la germinació. Un exemple ben conegut d’aquesta primera estratègia ho constitueixen les espècies d’estepes del gènere Cistus així com molts arbust de la família de les lleguminoses (argelagues, etc.). Una segona estratègia és acumular les llavors a la capçada dels arbres (banc de llavors a la capçada), dins d’estructures que resisteixen be els incendis (les pinyes). Amb la calor dels incendis, les pinyes s’obren, i les llavors cauen a l’espai obert creat per l’incendi i germinen. Este és el cas del del pi blanc (Pinus halepensis), tant abundant al nostre territori. En tots aquests casos, la reproducció està fortament lligada als incendis, cosa que se considera una adaptació al foc.

Exemples de germinció massiva poc després d’incendi a Odena 2015, Doñana 2017 , i Chile 2017, respectivament (clicar per a ampliar):

Ejemplos de germinción masiva poco después de incendio, en Odena 2015, Doñana 2017, y Chile 2017, respectivamente (clicar para ampliar).

 

Hace poco, la revista Mètode me hizo la siguiente pregunta: ¿Por qué hay plantas que necesitan el fuego para germinar? Aquí mi respuesta: català | castellano. También la copio aquí debajo, con alguna ligera modificación:

La finalidad de todo ser vio es reproducirse, y en el caso de las plantas esto incluye que las semillas germinen en un ambiente favorable para su crecimiento. Es por esto que las plantas han desarrollado estrategias para depositar sus semillas en espacios abiertos que permitan la germinación y el crecimiento de la descendencia. En muchas plantas, estas estrategias se basan en la dispersión de las semillas por animales o por el viento. Pero hay otras que aprovechan los espacios abiertos por incendios!

En los ecosistemas mediterráneos los incendios son relativamente frecuentes de manera natural y generan grandes espacios abiertos ideales para la germinación y el crecimiento de muchas plantas mediterráneas (mucha luz, poca competencia y elevada disponibilidad de nutrientes). Como consecuencia, muchas de estas especies han evolucionado para optimizar la germinación justo después del fuego. Para conseguir sincronizar la germinación con el momento del incendio, las plantas acumulan las semillas en el suelo (banco de semillas en el suelo) y las elevadas temperaturas o el humo de los incendios actúa de señal y estimula la germinación. Un ejemplo bien conocido de esta primera estrategia lo constituyen las especies de jara del género Cistus, así como muchos arbustos de la familia de las leguminosas (aliagas, etc.). Una segunda estrategia es acumular las semillas en la copa de los árboles (banco de semillas de copa), dentro de estructuras que resistan bien los incendios (piñas). Con las elevadas temperaturas del fuego, las piñas de abren y las semillas caen al espacio abierto creado por el incendio y germinan. Este es el caso del pino carrasco (Pinus halepensis), tan abundante en nuestro territorio. En todos estos casos, la reproducción esta fuertemente ligada a los incendios, hecho este que se considera una adaptación al fuego.

Related posts: fire drive trait divergence in smoke-induced germination | smoke-stimulated recruitment | seed dormancy as a fire adaptation | smoke-stimulated germination | heat and smoke as germination cues