Posts Tagged ‘fire’

Future fires

November 11th, 2016 No comments

There is a tendency to think that fires will increase in the near future due to global warming. This is because many fire risk prediction are based on climate only. However fire regime changes not only depend on climate [1]; there are other factors, like land-use changes, CO2, plant invasion, fragmentation, etc. that are also important drivers of change in fire activity [1]. Even plant drought stress (and flammability) not only depends on climate [2,3].

A recent simulation study [4] suggests that global burned area is certainly predicted to increase in the following decades when simulations are based on climate only (blue line in the figure below). However, adding the effect increased CO2 reduces the predicted burned area to no increase (green line below). Furthermore, when adding increased population density and urbanization (black and red lines), the model predicts much more area burnt in the last century (black lines 1900-2000) and a reduction of future burned area (red lines). The predicted reduction of fire during 1900-2000 is consistent with global charcoal records [5] and can be explained by increasing agriculture, land use and fragmentation. Overall, this study suggests that global area burned is unlikely to increase in the following decades.

Note that 1) this is a model, so take it with caution! 2) This model is at the global scale, but changes in different directions are expected in different regions, and this can have biodiversity consequences (even if the global balance is steady); for instance, in the Mediterranean Basin, fire are likely to keep increasing as land abandonment and fuels are increasing [6]. And 3) there is a high uncertainty in some fire drivers. For instance, temperature is likely to keep increasing, however, rainfall and wind changes are very uncertain, and landuse and emissions are subject to uncertain changes in environmental policies in different countries. In any case, this study gives us an idea of the possible sensitivity of different parameters.

Figure: Simulation of global area burned for 1900 to 2100 under different scenarios: a) climate only (blue line); b) climate + CO2 (green); c) climate + CO2 + population & urbanization (black lines; red area for the future predictions). From [4].

[1] Pausas J.G. & Keeley J.E., 2014. Abrupt climate-independent fire regime changes. Ecosystems 17: 1109-1120. [doi | pdf | blog]

[2] De Cáceres M, et al. 2015. Coupling a water balance model with forest inventory data to predict drought stress: the role of forest structural changes vs. climate changes. Agr. For. Meteorol. 213: 77–90. [doi | pdf | suppl. | blog]

[3] Luo, Y. & H. Y. H. Chen. 2015. Climate change-associated tree mortality increases without decreasing water availability. Ecol, Let. 18:1207-1215.

[4] Knorr W, Arneth A, & Jiang L, 2016. Demographic controls of future global fire risk. Nature Clim. Change 6:781-785.

[5] Marlon JR, et al. (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geosci, 1, 697-702.

[6] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | pdf | blog]


Smoke-stimulated germination (2): Shedding light through the smoke

November 1st, 2016 No comments

There are plants in which fire can breaks seed dormancy and stimulate germination. In some species, it is the heat of the fire that breaks seed dormancy and triggers germination (heat-stimulated germination, [1, 2]). In others, germination is stimulated by chemicals produced during the combustion of the organic matter (e.g., chemicals found in the smoke and charred wood) [1, 3]; we call this process, smoke-stimulated germination [5]. That is, in fire-prone ecosystems many plants have evolved seeds with sensitivity to heat and/or to chemicals produced by fire [1, 2, 3].

There are many species from a wide phylogenetic range with smoke-stimulated germination [5]; they appear in different regions worldwide and are stimulated by different combustion-related products, both organic and inorganic [4, 5]. All this suggest that smoke-stimulated germination is a trait that has appeared multiple times during the evolution, and thus is another example of convergent evolution [5].

In the Mediterranean Basin we currently know about 67 species (from 19 families) showing a significant increase in germination in response to smoke [6]. Families with many smoke-stimulated species in this region are Lamiaceae, Ericaceae and Asteraceae. However, there is still a lot of research to be done on smoke-stimulated germination in Mediterranean Basin flora, as many species have not yet been tested; in fact, very few annuals has been tested [6] despite there is evidence from field studies (3) and from other Mediterranean regions suggesting that smoke-stimulated germination is important in annuals.

But remember, plants are not the only organisms that have evolved in response to chemicals present in the smoke, humans too! [7].

smoke-germinationFigure: Germination (proportion of seeds) in control conditions (light yellow) and after a smoke treatment (blue) for four Mediterranean species in which germination is strongly dependent on smoke: Coris monspeliensis (Primulaceae), Erica umbellata (Ericaceae), Onopordum caricum (Asteraceae) and Stachys cretica (Lamiaceae) See [6].


[1] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105: 627-635. [pdf | doi | blog]

[2] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[3] Tormo, J., B. Moreira, and J. G. Pausas. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. J. Veget. Sci. 25: 771-777. [doi | wiley | pdf | blog ]

[4] Smoke-stimulated germination,

[5] Keeley J.E. & Pausas J.G. 2018. Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African J. Bot. 115: 251-255 [doi | pdf] <- New

[6] Moreira B. & Pausas J.G. 2018. Shedding light through the smoke on the germination of Mediterranean Basin flora. South African J. Bot. 115: 244-250 [doi | pdf] <- New

[7] Smoke and human evolution,

De incendios y cipreses (5)

October 11th, 2016 2 comments

Después de una serie de despropósitos sobre el posible uso de cipreses ignífugos [1-4], por fin parece que se encaucen las cosas: Los cipreses que estaban destinados para hacer de barrera cortafuegos en el monte, parece que finalmente se utilizarán en jardinería [5], y esperemos que para jardines urbanos, lejos del monte. En paisajes con incendios recurrentes, plantar cipreses en zonas semi-urbanas (en la interfaz urbano-forestal), no es recomendable, ya que si llega el fuego, o simplemente pavesas, pueden prender de manera intensa y actuar como antorchas. Por ello, los bomberos temen las casas rodeadas de cipreses, y de hecho, está prohibido plantarlos en jardines de diversas zonas de EEUU. Hay evidencias de que los cipreses pueden ejercer de captadores de pavesas (foto). La idea de utilizarlos como cortafuegos estaba fuera de toda lógica [4].

Cipreses-quemadosFoto: Valla de cipreses que prendió durante el incendio de La Granadella (4/Sep/2016, La Marina, Alicante). Nótese que el incendio no llegó directamente a la valla (los pinos y campos de cultivo  de los alrededores no se vieron afectados); es probable que el fuego llegase con una pavesa, como pasó con los distintos focos de este mismo incendio [6].


[1] De incendios y cipreses (1), 29/9/2012
[2] De incendios y cipreses (2), 7/10/2012
[3] De incendios y cipreses (3), 22/6/2013
[4] De incendios y cipreses (4), 31/8/2015

[5] La investigación española sobre cipreses cortafuegos acabará en plantas de jardín,

[6] El SEPRONA concluye que todos los focos del incendio de la Granadella fueron provocados por las pavesas (;  Una colilla mal apagada provocó el incendio de Xàbia (; El Seprona cree que una colilla originó el incendio y el viento causó los tres focos (

¿Será este el último post sobre el tema? ¿Se habrá ganado una pequeña batalla?
(podéis dejar vuestra opinión en los comentarios)


Fire benefits plants by disrupting antagonistic interactions

October 2nd, 2016 2 comments

There are many plants that benefit from fire. Typical examples are those that despite they may be killed by fire, the germination of their seeds is stimulated by the fire (either by the heat or by the smoke; [1,2]), and thus they recruit very well (high offspring abundance) and often increase there population size postfire. Species with fire-stimulated flowering [3,4] also benefit from fire. In a recent paper [5] we propose that there may be another mechanisms by which fire may benefit plants: fire may remove seed predators, and thus create a window of opportunity for reproduction under a lower predation pressure (predator release hypothesis). This is specially applicable to specialist plant-insect interactions. We documented two cases: in Ulex parviflorus, a plant species with fire-stimulated germination [1,2], fire eliminated there specialist seed predator weevil (Exapion fasciolatum, Apioninae, Brentidae) and thus increased the available seed number for germination. Similarly, in Asphodelus ramosus, a fire-stimulated flowering species [3], fire reduced the specialist herbivore and seed predator (Horistus orientalis, Miridae, Hemiptera) and increased their fruit production. Thus, fire, by disrupting the antagonistic interactions, benefit plants; the temporal window of this predator release is likely to depend on fire size. For more information see reference [5].


Figure: Proportion of predated fruits of Ulex parviflorus in unburned sites (grey boxes) and at the edge and center of a recently burned area (white boxes), 2 and 3 years postfire. Data from two large wildfires in Valencia (2012) [5]; Edge and Center of the burned area refer to <1 km and >1.5 km from the fire perimeter, respectively. Photo of the seed predator (Exapion) from


[1] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [pdf | doi | blog]

[2] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[3] Postfire blooming of Asphodelous,

[4] Postfire flowering: Narcissus,

[5] García Y., Castellanos M.C. & Pausas J.G. 2016. Fires can benefit plants by disrupting antagonistic interactions. Oecologia 182: 1165–1173. [doi | pdf] <- New!!


The fire overview effect

September 18th, 2016 No comments

The overview effect is the feeling and awareness reported by some astronauts when viewing the entire Earth during space-flight. Fire ecologists have our own overview effect! When remote sensed fire information was available for the first time at the global scale, it provided a magnificent and unprecedented view of the importance of fires on the Earth, and fires become a global issue. This remotely sensed information was a very valuable data because, for the first time, it was possible study some fire ecology processes at the global scale (for example [1]). Here is an animation for a 10 years period (2000-2010). It shows that on our planet, fires are widespread and something is always burning; we live in a flammable planet.


MODIS Rapid Response System Global Fire Maps, NASA. Each colored dot indicates a location where MODIS detected at least one fire during a 10-day period.

More global fire animations: youtube | Earth Observatory |


[1] Pausas J.G. & Ribeiro E. 2013. The global fire-productivity relationship. Global Ecol. & Biogeogr. 22: 728-736. [doi | pdf | appendix | erratum | blog]


Smoke and human evolution

August 31st, 2016 1 comment

In this blog we have discussed that some plants have evolved seeds with sensitivity to chemicals produced by fire in such a way that these chemicals stimulate the germination of the plants after a fire; we call this process smoke-stimulated germination [1-3]. Well, plants are not the only organisms that have evolved in response to chemicals present in the smoke, humans too! A recent paper show that modern humans are the only primates (including early hominids as Nearthentals and Denisovans) that carry a mutation increasing tolerance to smoke chemicals produced by fires [4]. This mutation could have given an evolutionary advantage to modern humans in relation to other hominids as allowed them to use fire for many important activities (e.g., cooking, hunting, defense, heating, agriculture). This high exposure to smoke would have also increased the susceptibility to pulmonary infections, and even the evolution of some of them (tuberculosis [5]). The tolerance to smoke also allowed modern humans to have some tolerance to pollution and to smoke cigarettes! That is, the ability to smoke could be a side effect (an exaptation, if you’d like) of been adapted to use fire, and in fact, it currently acts as a secondary sexual character!

Smoking as a secondary sexual character (Woody Allen in Manhattan, 1979).

[1] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [doi | pdf | post]

[2] Tormo, J., B. Moreira, and J. G. Pausas. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. Journal of Vegetation Science 25: 771-777. [doi | wiley | pdf | post]

[3] Smoke-stimulated germination,

[4] Hubbard, T.D., Murray, I.A., Bisson, W.H., Sullivan, A.P., Sebastian, A., Perry, G.H., Jablonski, N.G. & Perdew, G.H. (2016) Divergent Ah receptor ligand selectivity during hominin evolution. Mol. Biol. Evol., 33:2648-2658.

[5] Chisholm, R.H., Trauer, J.M., Curnoe, D. & Tanaka, M.M. (2016). Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc. Natl. Acad. Sci. USA, 113, 9051-9056.

Fire behaviour by Vareschi

May 13th, 2016 No comments

Recently I came across this figure published in 1962 by Volkmar Vareschi [1] which nicely synthesize variations in temperatures in the flame and in the soil, as well as flame height and flame spread (time and distance) in a simple hand-drawing. It is not easy to see a figure on fire behaviour as simple and illustrative as this one; I only miss a bit of colour. It refers to a burn of a Trachypogon savanna in Los Llanos, Venezuela. Vareschi (1906-1991) was born in Austria and moved to Venezuela in 1950; he is considered a pioneer in tropical plant ecology; one of his papers was about savanna fires [1].


Vareschi-1962-burnFigure 2 from [1]



[1] Vareschi, V. (1962) La quema como factor ecológico en los Llanos. Boletin de la Sociedad Venezolana de Ciencias Naturales 23, 9-31.

Odena: 9 meses posincendio

May 1st, 2016 No comments

El 27 de Julio de 2015 un incendio forestal afectó unas 1200 ha en Òdena (Anoia, Catalunya central), una zona dominada principalmente por pino carrasco (Pinus halepensis). Pocos días después ya se empezaba a ver un inicio de la regeneración del ecosistema [1, 2]. En una visita reciente (Abril 2016, 9 meses posincendio), vemos que en gran parte de la zona se han cortado y extraído los árboles quemados (y algunos no quemados). Antiguamente, cuando aun no se daba casi ningún valor a los ecosistemas naturales, y sí a la madera, se sacaban los árboles quemados para obtener algún beneficio económico; y algunas veces por motivos “estéticos”. Hoy en día, no parece una acción muy apropiada [3], a no ser que haya una razón de peso, cosa que desconozco en el caso de este incendio.

Los árboles quemados benefician a la regeneración porque retienen un poco el suelo, disminuyen el impacto de las gotas de lluvia en el suelo, mantienen cierta humedad, captan agua de la niebla, sirven de posadero para aves que traen semillas (que contribuyen a la regeneración), y son hábitat para fauna diversa [4]. Cortar los árboles requiere entrar con maquinaría en la zona quemada (con suelos muy sensibles), generar caminos y arrastrar troncos. Esto conlleva la eliminación de todos los beneficios mencionados, ademas de la disminución de parte del suelo y mantillo, la mortalidad de las primeras germinaciones posincendio (por ejemplo del pino), la formación de surcos que pueden ser puntos de inicio de erosión (cárcavas), y disminución de la regeneración natural en general. En general, entrar en una zona recién quemada, y degradar el ecosistema disminuyendo la regeneración y aumentando la erosión, está poco justificado [3]; en algunos casos, estas intervenciones pueden ser más perjudiciales que el propio incendio.

Fotos: a) Pinar con rebrotes de madroño 4 meses después del incendio, antes de cortar los árboles; se aprecia un cierto ambiente forestal. b) surcos del arrastre de troncos durante la extracción de la madera quemada. c) Ambiente 9 meses después del incendio, una vez se han cortado los árboles. d) Germinación de pino 4 meses después del incendio; germinaciones susceptibles a ser eliminadas si se entra con maquinaria o se arrastran troncos. e) pinos vivos (no quemados) cortados y apilados (9 meses posincendio). f) Enebro rojo (Juniperus oxycedrus) que rebrota tras quema y corta (9 meses posincendio). Incendio de Odena, Abril 2016 (fotos: JG Pausas).


[1] Odena fire: first visitors, 10-08-2015

[2] Odena fire: 55 days postfire, 17-10-2015

[3] Lo que no se debe hacer después de un incendio, 13-08-2015

[4] Pausas, J.G., Ribeiro, E. & Vallejo, R. 2004. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. Forest Ecology and Management 203: 251-259. [doi | pdf]

Flammable Mexico

April 13th, 2016 No comments

Mexico is a megadiverse North American country with a wide range of climates (e.g., wet tropical, warm temperate, mediterranean, and arid) and a diverse topography (from sea level up to 5700 m asl). These characteristics together with its location in the transition toward Central America make this land a global biodiversity hotspot with species belonging to northern (Neartic) lineages co-occurring with others from southern (Neotropical) lineages. An important factor contributing to this biodiversity are the frequent disturbances in this region where volcanoes, hurricanes, and wildfires are common, together with droughts and floods. Fires occur mainly in April-May (Figure below, [1]); the natural sources of ignition being lightning, especially in mountains, and volcanoes (with clear evidence of fires ignited by volcanoes, e.g. from the Popocatépetl volcano). However, currently most fires are caused by human activities, as in many other countries. Hurricanes add fuel and increase the intensity and probability of fire [2].

Mexico is a center of diversification of pines (Pinus) and oaks (Quercus), two species groups strongly related to fire [3,4]. Mexico harbors about 50 species of pines and these incorporate all the fire strategies and traits observed in this genus [4]. For instance, there are many fire tolerant pines with thick barks, self-pruning abilities, and in some cases, with basal or juvenile resprouting capabilities; fire embracers (postfire seeders) with thin bark and serotinous cones; and fire avoiders that lack these traits. The country also harbors some 160 Quercus species, ranging from strongly resprouting shrubby species to many tree oaks with relatively thick bark that live in surface fire ecosystems, and including evergreen and drought-deciduous species with a large range of leaf morphologies. I was surprised to see some oaks with very large, and very thick leathery leaves that are deciduous, certainly an outlier in the leaf economics spectrum. More details in [1].

Figure: Recent fire activity in Mexico (2001-2015) estimated from the monthly number of active fires recorded by the Terra satellite (MODIS hotspots). Top: temporal variability (x-axis ticks indicate the begining of the year). Bottom left: fire seasonality– the flammable season is concentrated into four months (March-June), with a peak in April-May (the end of the dry season). Bottom right: proportion of active fires in each biome (TrDry: tropical dry broadleaf forests; TrConif: tropical coniferous forests: TrMost: tropical moist broadleaf forests; Desert: deserts and xeric shrublands; Others). From [1]

[1] Pausas J.G. Flammable Mexico. Int. J. Wildland Fire [doi | pdf]

[2] Fire-wind interactions, 30 Oct 2015

[3] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[4] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirectpdf]

Postfire resprouting of Chamaerops humilis

March 18th, 2016 No comments

“A few, but only a few species of palms, are, like our Coniferae, Quercineae, and Betulineae, social plants : such are the Mauritia flexuosa, and two species of Chamaerops, one of which, the Chamaerops humilis, occupies extensive tracts of the ground near the Mouth of Ebro and in Valencia …” — Alexander von Humboldt (1848)

Chamaerops humilis (Mediterranean dwarf palm) is the only native palm in continental Europe, and the northernmost naturally occurring palm in the world. It is native to the western Mediterranean Basin, occurring along the Mediterranean cost of Spain (as mentioned by Humboldt), Portugal, France, Italy, Malta, Morocco, Algeria, and Tunisia. The other palm occurring in the Mediterranean Basin is Phoenix theophrasti, a rare palm growing in the Crete island and in the southern Turkey [MedTrees].

Humboldt probably did not know that Chamaerops humilis resprouts very quick after fire (at that time fire was not considered as part of the natural processes). The resprouting of this species does not necessary come from new dormant buds (as in most typical resprouters) but from the normal apical buds protected from the fire by the leaf bases in the stem.The first resprouting leaves often show the typical burned-brown-green pattern of the photo below. This is because in palms (and in all monocots), the meristem is at the base of the leaves (more protected), and thus even burned leaves can still grow from the base and showing the upper part burned. In addition, C. humilis can generate basal suckers from an underground rhizome. C. humilis often flowers very quickly after fire, together with the first leaves (upper photo). Overall it is very resilient to recurrent fires.

Chamaerops humilis (one of the few ‘social palms’ following Humboldt) 2-3 months postfire in the Valencia region (eastern Spain; photos: JG Pausas)


Humboldt, A. von (1848). Aspects of nature (original title: Ansichten der Natur, 3rd ed).


Incendios forestales (de vegetación) en México

March 1st, 2016 1 comment

Recientemente se ha publicado un nuevo libro sobre incendios forestales. El libro describe la importancia y los regímenes de incendios en los diferentes ecosistemas de México, así como aspectos sobre historia y manejo del fuego [1]. Es un libro extenso, enciclopédico, con unas 1700 páginas publicadas en 2 volúmenes. El primer volumen (18 capítulos) representa un paseo por la gran variedad de paisajes de México (pinares, bosques de encinos, de oyamel, de galería, pastizales, matorrales, selvas, bosques mesófilos de montaña, sabanas, manglares, palmares, etc.), y en cada uno de ellos se explica el régimen de fuego y las respuesta de las especies y ecosistemas. El segundo volumen (11 capítulos) aborda cuestiones de comportamiento, prevención, y combate del fuego, así como una historia del fuego desde sus inicios (con los primeros ecosistemas terrestres [2]) hasta el uso del fuego en las culturas mesoamericanas y en el México actual. Si hay algo que se encuentra a faltar sería una visión evolutiva; quizá los lectores pueden encontrar esas visión en mi propio libro [3]. Más comentarios sobre el libro y sobre México en [6].

Dante-Rodriguez-Trejo_libroPortadas del volumen 1 (izquierda) y 2 (derecha)

A veces se ha considerado que el concepto de incendios forestales se refiere sólo a los incendios que ocurren en bosques, o incluso a incendios que ocurren en plantaciones forestales. Para evitar ese mal entendido, el autor titula el libro ‘incendios de vegetación‘, ese decir, para enfatizar que el libro se refiere a incendios en cualquier tipo de vegetación. En España, actualmente el término ‘forestal‘ se refiere a cualquier tipo de vegetación natural (también llamado monte), y en ese contexto es cómo a menudo usamos el concepto de incendios forestales [3]. Así es como lo explicaba yo en el prólogo del libro ‘Incendios forestales‘:

Los incendios son fuegos que se propagan sin control humano; cuando ocurren en la naturaleza se llaman incendios forestales. El término forestal está relacionado con una clasificación tradicional de los usos del suelo, donde el uso forestal incluye cualquier zona terrestre que no sea de uso urbano ni agrícola. De este modo, el término incendios forestales se refiere a los fuegos no controlados (sean de origen natural o antrópico) que ocurren en los ecosistemas terrestres, y que se propagan por la vegetación, sea ésta del tipo que sea (bosque, sabana, matorral, pastizal, humedal, turbera, etc.). Por lo tanto, incendios forestales, y por extensión este libro, no sólo hace referencia a bosques, como a veces se ha interpretado, sino a cualquier tipo de ecosistema terrestre” [3]

En inglés también hay una amplia nomenclatura para referirse a los incendios forestales, como por ejemplo, wildfires (principalmente utilizado en Norte América), forest fires (Europa), bush fires (Australia), vegetation fires, landscape fires, etc., todos ellos describen los incendios en cualquier tipo de vegetación.


[1] Rodríguez Trejo, D. A. 2015. Incendios de vegetación. Su ecología, manejo e historia. 2 vol. Ed. Colegio de Postgraduados, Biblioteca Básica de Agricultura, México.

[2] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doijstor | pdfpost]

[3] Pausas J.G. 2012. Incendios forestales. Una visión desde la ecología. Ed Catarata-CSIC. Madrid. [libro]

[4] He T., Pausas J.G., Belcher C.M., Schwilk D.W., Lamont B.B. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[5] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

[6] Pausas J.G. 2016. Flammable Mexico. Int. J. Wildland Fire [doi | pdf]


Olive trees resprouting

February 22nd, 2016 No comments

The typical image on a cultivated olive tree (Olea europaea) is a short squat tree with a thick gnarled trunk. Below are some olive trees with a slightly different shape, after being burned twice in different wildfires (1994 and 7/2015) in Montán (Castelló, eastern Spain). Before 1994 these trees were single-stemmed with the typical thick trunk; they were planted long ago for olive production. The 1994 fire killed the main stem and the tree produced many resprout from the base, around the trunk (it became multi-stemmed). In 2015 in burned again killing those 21 year-old resprouts and producing many new ones (the green ones in the pictures, 7 month-old resprouts). The 2015 fire also consumed the main stem that had died in the 1994 fire, including the base of the stem, and thus it produced a hole in the middle of the tree (second picture). This is quite common.

Olea resprouting 1
Olea resprouting 2
Photos: Olive trees (Olea europaea) resprouting after two fires (1994, 7/2015; JG Pausas 2/2016).

More on resprouting: Lignotubers | Resprouting at the global scaleEvolutionary ecology of resprouting and seedingPhysiological differences between resprouters and seedersTo resprout or not to resprout | Differences between resprouters and non-resprouters | Fire, drought, resprouting: leaf and root traits |


Convivir con el fuego: Decálogo de incendios forestales

February 3rd, 2016 No comments

Hace ya unos años escribimos un decálogo donde proponíamos unas bases ecológicas para convivir con los incendios forestales [1]. Ahora, la Fundación Pau Costa, en el marco de su 5º aniversario, ha compilado otro decálogo [2], este más amplio en temática y con muchos más autores, pero con un objetivo similar, aprender a convivir con el fuego. Los interesados en apoyar el decálogo tienen la posibilidad de hacerlo firmando el formulario que hay al final del mismo.

Foto: Quema experimental en Ayora (Valencia, 4/2009) realizada con la finalidad de entender el efecto de los incendios en los ecosistemas mediterráneos.


[1] Pausas J.G. & Vallejo R. 2008. Bases ecológicas para convivir con los incendios forestales en la Región Mediterránea – decálogo. Ecosistemas 17(2):128-129, 5/2008. [enlace | pdf]

[2] Decálogo de incendios forestales, Pau Costa Fondation, [enlace | pdf]

[3] Pausas, J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

[4] ‘Conviure amb el foc’, entrevista en El Temps, 24 Julio 2012 [pdf]

[5] Otros textos de divulgación sobre incendios y ecología [divulgación]

[6] Towards prescribed fires,, 7 Oct 2013

[UPDATE 1/2018]

[Español] Decálogo de incendios forestales: pdf | web (adhiérete)

[English] Forest fire decalogue: pdf  |  web (with option for supporting it)

[Català] Decàleg d’incendis forestals: pdf  |  web (adhereix-t’hi!) 

[Português] Decálogo do fogo: pdf

[Italiano] Decalogo di fuoco: pdf

Fire in the root of humans (2)

January 16th, 2016 No comments

Many people have the idea that fires scare animals and fled them in panic. However this is not always true, some species react still and calm and move away to safe sites. Some time ago I mentioned a study demonstrating that chimps in wild, when they see a wildfire, they react calmly, predict their behaviour and move accordantly without any stress or fear, suggesting that they have some understanding of fire behaviour [1]. Few days ago I came across other studies [2,3] suggesting that different species of primates not only react calmly to fire but after a fire, they increase their home range to include the area burned and used it for searching food, including ‘cooked’ fruits! So wildfires were very important in the history of humans [4], they could have contribute to the first step towards humanity from our ancestors …

Figure: In captivity, some apes are able to light a fire a roast vegetables (see youtube1, youtube2). Photo from

[1] Fire in the root of humans, 19-1-2010.

[2] Jaffe KE, Isbell LA 2009. After the fire: benefits of reduced ground cover for vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 71:252-260.

[3] Herzog NM, Parker CH, Keefe ER, Coxworth J, Barrett A, Hawkes K 2014. Fire and home range expansion: A behavioral response to burning among savanna dwelling vervet monkeys (Chlorocebus aethiops). Am. J. Phys. Anthropol. 154:554-560.

[4] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doijstor | BioOne | pdfpost]


Heritability of serotiny (2): a molecular approach

December 2nd, 2015 No comments

Not long ago we demonstrated that serotiny (i.e., the capacity to accumulate a seed bank in the canopy until the seeds are released by fire) is an heritable trait in pines [1]. This analysis was based on a classical provenance – progeny common garden experiment. However, trait variability under controlled environmental conditions may not fully reflect the variability observed in the field, and thus this estimate of heritability may not reflect how traits respond to natural selection. This is because there is higher environmental variability in the field and also because garden experiments typically include individuals that would not survive in the field (i.e., artificially increases progeny survival) [2]. With the aim of obtaining a more realistic estimate of heritability of serotiny, we have recently estimate it directly in the field for two pine species (P. halepensis, P. pinaster) [3]. Because in the field it is not possible to construct a pedigree, we used the relatedness among individuals estimated from molecular markers (SNPs) for the same individuals from which we had estimated serotiny previously [4]. The variance in serotiny was modelled incorporating the environmental variability (climate and fire regime) using a Bayesian ‘animal model’. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). The difference is not surprising because wild P. halepensis and P. pinaster populations extend over heterogeneous landscapes with large environmental variations. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire-related trait for evolutionary change in the wild [2].

Pinus patula
Fig: Serotinous cones of P, halepensis and P. pinaster can be observed in previous posts (P, halepensis, P. pinaster). The photo here shows serotinous cones of Pinus patula from central Mexico (in a foggy rainy day).


[1] Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.C. & Pausas, J.G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany 114: 571-577.  [doi | pdf | suppl. | blog]

[2] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20: 318-324. [doi | sciencedirect | cell | pdf]

[3] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Molecular Ecology 24: 5633–5642 [doi | pdf | suppl.]

[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356. [doi | amjbot | pdf | supp. | blog]



November 17th, 2015 1 comment

Lignotubers are swollen woody structures located at the root-shoot transition zone of some plants; they contain numerous dormant buds and starch reserves [1]. They are ontogenetically programmed, that is, they are not the product of repeated disturbances; and thus they can be observed at very early stages of the plant development (other types of basal burls may be a response to multiple disturbances). Lignotubers enables the plant to resprout prolifically after severe disturbances that remove the aboveground biomass, thus they are considered adaptive in fire-prone ecosystems [2]. Lignotubers are not well-known in many floras because they are often below-ground (i.e., detected only after excavation) and because they are often confused by other non-ontogenetically determined basal burls; thus some reports of lignotubers in the literature are mistakes. In a recent review [1] we provide examples of species with a clear evidence of lignotubers in the Mediterranean basin, together with detailed morphological and anatomical description of lignotubers in saplings. The species with lignotuebers in the Mediterranean basin include many Erica species (e.g. E. arborea, E. scoparia, E. australis, E. lusitanica, E. multiflora), the two Arbutus species (A. unedo, A. andrachne), Rhododendron ponticum, Viburnum tinus, Phillyera angustifolia, Quercus suber (not obvious macroscopically!), Tetraclinis articulata and Juniperus oxycedrus (but not in all populations!). Please let me know (email address here) if you know of other Mediterranean basin species with lignotubers! Thanks

Figures: Examples of lignotubers for Mediterranean basin species. A Juniperus oxycedrus (resprouting after fire). B Viburnum tinus. C Arbutus unedo. D Quercus suber (not a clear basal swelling). E Olea europaea. F Phillyrea angustifolia (adult), G Phillyrea angustifolia (saplings). In many species (e.g., V. tinus, A. unedo and P. angustifolia) the lignotuber is only evident after excavating the root-shoot transition zone.


[1] Paula S., Naulin P.I., Arce C., Galaz C. & Pausas J.G. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology  [doi | pdf | suppl.]

[2] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16: 406-411.  [doi | sciencedirect | pdf | For managers]


Fire – wind interactions

October 30th, 2015 1 comment

I’ve just had the opportunity to see some of the consequences of the hurricane Patricia that affected Jalisco, Mexico, last weekend. Here is the effects on a Pinus dauglasiana forest in the Sierra de Manantlán biosfere reserve. Some parts of this forest had burned several years ago (< 10 years) mainly as understory fire, and some trees were injured at the base but most survived (as in any typical undertory fires); there were also some crowning in small patches. Fire killed many understory fire-sensitive broadleaved shrubs, and were replaced by a high density of the pine seedlings (Fig. 1); there were also some plants resprouting (e.g., Quercus, Arbutus, etc.). Now, the strong winds of the hurricane is interacting with fire in two ways: (1) the wind have killed some of the fire-injured trees that had survived the fire (Fig. 1); and (2) the wind has greatly increased the fuel in the forest floor, even in the places where trees were not blown down (Fig. 2), which implies an increase in the chance for a surface fire of high intensity during the next dry season. That is, this seems an opportunity to study the interaction between these two disturbances, fire and hurricanes.

Pinus dauglasianaFig. 1. Pinus dauglasiana forest after a fire (see the seedling regeneration) followed by an hurricane.

Pinus dauglasiana 2Fig. 2. The forest floor of the Pinus dauglasiana forest (unburned) has greatly increased the fuel after the hurricane even in the places where trees were not blown down; the whole forest has a carpet of recently fallen branches and leaves.

Odena fire: 55 days postfire

October 17th, 2015 No comments

The 27th of July a wildfire in Òdena (Anoia, central Catalonia, NE Spain) burned ca. 1200 ha, mainly of Pinus halepensis forest [1]. Here some details 55 days after the fire:

Top: limit of the fire, with the Montserrat mountains in the background. Middle: resprouting of understory plants; Arbutus unedo in the right. Bottom left: concentration of pine nuts around an ant nest. Bottom right: Genista scorpius resprouting. Photos by J. Garcia-Pausas (top, bottom right), A. Mazcuñan (bottom left), JG Pausas (middle).

[1] Odena fire: first visitors, 10-08-2015

Fire adaptations in Mediterranean Basin plants

September 7th, 2015 No comments

Few days ago a botanist colleague ask me whether there were some fire adaptations in the plants of the Mediterranean Basin, similar to those reported in other mediterraenan-climate regions. So I realised that researchers working on other topics may not be aware of the recent advances in this area. Here is my brief answer, i.e., some examples of species growing in Spain that show fire adaptations; this is by no means an exhaustive list, but a few examples of common species for illustrative purpose. You can find a description of these adaptations and further examples elsewhere [1, 2, 3, 4]. It is also important to note that plants are not adapted to fire per se, but to specific fire regimes, and thus some adaptations my provide persistence to some fire regimes but not to all [1]. That is, species that exhibit traits that are adaptive under a particular fire regime can be threatened when that regime changes.

  • Serotiny (canopy seed storage): Pinus halepensis, Pinus pinaster, with variability in serotiny driven by different fire regimes [5, 6]
  • Fire-stimulated germination: There are examples of heat-stimulated germination, like many Cistaceae (e.g., Cistus, Fumana [7, 8]) and many Fabaceae (e.g., Ulex parviflorus, Anthyllis cytisoides [7, 8]), as well as examples of smoke-stimulated germination like many Lamiaceae (e.g., Rosmarinus officinalis, Lavandula latifolia [7]) or Coris monspeliensis (Primulaceae [7]). There are also examples of species with smoke-stimulated seedling growth (Lavandula latifolia [7])
  • Resprouting from lignotubers: Arbutus unedo, Phillyrea angustifolia, Juniperus oxycedrus, many Erica species (e.g., E. multiflora, E. arborea, E. scoparia, E. australis) [4, 17]
  • Epicormic resprouting: Quercus suber [9, 10], Pinus canariensis [4]
  • Fire-stimulated flowering: Some monocots like species of Asphodelus, Iris, Narcissus [11, 12]
  • Enhanced flammability: Ulex parviflorus shows variability of flammability driven by different fire regimes [13] and under genetic control [14]. Many Lamiaceae species have volatile organic compounds that enhance flammability (e.g., Rosmarinus officinalis [16]).
  • Thick bark and self-pruning (in understory fires): Pinus nigra [3,15]




[1] Keeley et al. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406-411. [doi | pdf]

[2] Keeley et al. 2012. Fire in Mediterranean Ecosystems. Cambridge University Press. [book]

[3] Pausas JG. 2012. Incendios forestales. Catarata-CSIC. [book]

[4] Paula et al. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420-1420. [doi | pdf | BROT database]

[5] Hernández-Serrano et al. 2013. Fire structures pine serotiny at different scales. Am J Bot 100:2349-2356. [doi | pdf]

[6] Hernández-Serrano et al. 2014. Heritability and quantitative genetic divergence of serotiny, a fire persistence plant trait. Ann Bot 114:571-577. [doi | pdf]

[7] Moreira et al. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627-635. [doi | pdf]

[8] Moreira B and Pausas JG. 2012. Tanned or Burned: the role of fire in shaping physical seed dormancy. PLoS ONE 7:e51523. [doi | plos | pdf]

[9] Pausas JG. 1997. Resprouting of Quercus suber in NE Spain after fire. J Veget Sci 8:703-706. [doi | pdf]

[10] Catry et al. 2012. Cork oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7:e39810. [doi | pdf ]

[11] Postfire flowering: 2 May 2015

[12] Postfire blooming of Asphodelous, 5 Apr 2014

[13] Pausas et al. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol 193:18-23. [doi | pdf]

[14] Moreira et al. 2014. Genetic component of flammability variation in a Mediterranean shrub. Mol Ecol 23:1213-1223. [doi | pdf]

[15] He et al. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol 194:751-759. [doi | pdf | picture]

[16] Flammable organic compounds: Rosmarinus officinalis, 2-Oct-2015

[17] Paula et al. 2016. Lignotubers in Mediterranean basin plants. Plant Ecology [doi | pdf | suppl. | blog]


De incendios y cipreses (4)

August 31st, 2015 1 comment

En el verano de 2012, un gran incendio afectó unas 21.000 ha en la zona de Andilla-Alcublas (Valencia). En esa zona había una pequeña plantación de cipreses que no se vio afectada por el fuego, y se extendió entre los medios de comunicación el falso mensaje de que los cipreses podían ser “ignífugos”. Ya hablamos en su día de que los cipreses de esa plantación no se quemaron porque estaban rodeados de un amplio cortafuegos, y localizados en una pequeña depresión (que aún dificulta más la propagación del fuego), tal como se puede ver en las fotografías y detalles que presenté en este mismo blog ([1], [2]). Otros cipreses en ese mismo incendio sí que ardieron (ver foto), tal como lo han hecho en otros muchos incendios.

Foto: Cipreses quemados y muertos por el incendio ocurrido en Andilla-Alcublas (Valencia) en 2012 (foto: Mayo de 2014, cerca de Sacanyet).

En 2013 también comenté [3] que un estudio analizaba en el laboratorio la inflamabilidad de ramitas de ciprés, y concluía que aunque las hojas verdes del ciprés se pueden considerar relativamente poco inflamables, este árbol suele acumular ramas secas que son muy inflamables y, por lo tanto, representan un peligro para los incendios [4]. Estas conclusiones son coherentes con el hecho de que en algunos países esté prohibido plantar cipreses en jardines de casas que lindan con el monte, precisamente por su peligro con los incendios. Y también son coherentes con los comentarios de algunos bomberos de Valencia sobre los problemas a la hora de proteger de los incendios forestales las casas con setos de ciprés. En otras palabras, no hay ninguna base que apoye la idea de que los cipreses puedan ser útiles para la lucha contra los incendios, e incluso podrían ser contraproducentes.

Ahora, algunos medios de comunicación, siguiendo el mensaje dado en 2012, anuncian que unos investigadores “resuelven el enigma de los cipreses que resisten incendios” [5], sin mencionar la causa real: que estaban en una vaguada y rodeados de un amplio cortafuegos. Esta información se basa en un nuevo estudio sobre la inflamabilidad de los cipreses [6] que analiza diversas componentes de la inflamabilidad de estos árboles, pero no se realiza una comparación exhaustiva con otras especies; solo se compara de manera cualitativa con algún estudio previo, principalmente con pinos. En general los resultados sugieren que la inflamabilidad de los cipreses puede ser en algunos aspectos un poco menor que la de los pinos, aunque en otros puede ser igual. En cualquier caso, el estudio se basa en la inflamabilidad de las hojas, no de toda la planta, ni en el marco de un gran incendio en pleno verano, donde pequeñas diferencias en la capacidad de retener humedad son poco relevantes. Por lo tanto, aunque a las hojas les cueste un poco más generar una llama, esta diferencia no justifica la plantación de cipreses como medida de protección contra los incendios (tal como se sugiere en el estudio) por varias razones:

1) No son plantas autóctonas de la Península Ibérica y, por lo tanto, su plantación en sistemas naturales ibéricos no es aconsejable
2) No resisten los incendios. Son inflamables y no rebrotan después de ser quemados. Hay otras especies autóctonas y rebrotadoras que podrían ser más apropiados para plantar en zonas con incendios recurrentes (especies más resilientes)
3) Puede ser que les cueste más arder que a algunas otras plantas, pero cuando arden, lo pueden hacer con elevada intensidad

Esperemos que algún día deje de circular este bulo de los cipreses ignífugos.

[1] De incendios y cipreses (1), 29/9/2012
[2] De incendios y cipreses (2), 7/10/2012
[3] De incendios y cipreses (3), 22/6/2013

[4] Ganteaume, A., Jappiot, M., Lampin, C., Guijarro, M. & Hernando, C. (2013) Flammability of some ornamental species in wildland–urban interfaces in southeastern France: laboratory assessment at particle level. Environ. Manage., 52: 467-480.

[5] Resuelven el enigma de los cipreses que resisten incendios, BBC Mundo 27 Agosto 2015  [y propagado en diversos medios de comunicación españoles]

[6] Della Rocca, G., Hernando, C., Madrigal, J., Danti, R., Moya, J., Guijarro, M., Pecchioli, A. & Moya, B. (2015) Possible land management uses of common cypress to reduce wildfire initiation risk: a laboratory study. J. Environ. Manage., 159: 68-77.

Lo que no se debe hacer después de un incendio

August 13th, 2015 No comments

Como cada verano, en España están ocurriendo incendios forestales, algunos de ellos de gran tamaño, como el de la Sierra de Gata en Extremadura (9 y 10 de Agosto, más de 8000 ha quemadas). Diferentes colectivos (periodistas, ecologistas, etc.) me preguntan qué se debe hacer después de un incendio de gran magnitud como este. No he visitado la zona, pero puedo dar algunas sugerencias generales, en especial sobre lo que no se debería hacer (desde un punto de vista ecológico y para la conservación):

  • Entrar y pisar en lo zona afectada por el fuego, y especialmente entrar con vehículos y maquinaría pesada. Después de un incendio, el sistema es muy frágil, y pisotear la zona puede facilitar la erosión del suelo y mermar la capacidad de regeneración natural.
  • Realizar actuaciones de restauración de manera generalizada en toda la zona afectada. Se debería evaluar con cierto detalle la zona para ver si hay sitios donde la probabilidad de pérdida de suelo es alta, o donde se prevea que la de regeneración natural será baja. En general, la mayoría de nuestras zonas afectadas por incendios se regenera relativamente bien sin ninguna intervención, pero puede haber zonas concretas que requieran medidas urgentes de protección del suelo o ayuda a la regeneración. Normalmente esto no es necesario en toda la zona quemada, sino sólo en algunas zonas específicas (con más pendiente, con suelos especialmente erosionables, etc.). Hay medidas urgentes que se deben realizar rápidamente, antes de las primeras lluvias, como poner ramas o paja para frenar la erosión, y otras que se deben aplicar cuando el sistema ya se ha recuperado un poco y no es tan frágil (por ejemplo, pasado un año), como realizar plantaciones. En cualquier caso, siempre serán actuaciones puntuales en zonas donde sea realmente necesario. Actuar donde no es necesario puede ser contraproducente (y caro).
  • Extraer los árboles quemados. Los árboles quemados, aunque hay quien piensa que quedan feos, benefician a la regeneración porque retienen un poco el suelo, disminuyen el impacto de las gotas de lluvia en el suelo, mantienen cierta humedad, captan agua de la niebla, y sirven de posadero para aves que traen semillas y que contribuyen a la regeneración. Cortar los árboles requiere entrar con maquinaría en la zona quemada, y arrastrar troncos, cosa que conlleva la disminución de la regeneración natural y la formación de puntos de erosión (cárcavas). Los árboles muertos no son foco de plagas, aunque árboles debilitados por el fuego (árboles medio muertos) sí pueden ser una atracción para algunas plagas de escolítidos. Por lo tanto, se debe hacer un seguimiento de estos árboles, y si se detecta algún inicio de plaga, se deberán cortar; pero solo esos árboles debilitados y los de su alrededor, y nunca de manera genérica en toda la zona.


fotos-erosioFotos de lo que no se debe hacer después de un incendio: extraer la madera quemada de manera indiscriminada. Estas actuaciones generan erosión y reducen la regeneración natural. Las fotos corresponden a un año después del incendio de 2012 en  Cortes de Pallás (Valencia).

Lecturas sugeridas:
Incendios forestales
Incendios del 2012 en Valencia: una año después
Grandes incendios en Valencia, junio 2012
Bases ecológicas para convivir con los incendios forestales: decálogo


Odena fire: first visitors

August 10th, 2015 1 comment

The 27th of July a fire in Òdena (Anoia, central Catalonia, NE Spain) burned ca. 1200 ha, mainly of Pinus halepensis. It was a crown fire of relatively high intensity. Twelve days after the fire, everything was still black, there were not yet signs of any plant resprouting; however, there were already few visitors. Here a couple of examples.


Charaxes jasius (left) and Parasteropleurus (Steropleurus) perezii (right) on recently burned trees (Photos by A. Mazcuñan and P. Mazcuñan, respectively).


Postfire flowering: Narcissus

May 2nd, 2015 No comments

Spectacular postfire flowering of Narcissus triandrus subsp. pallidulus in a recently burnt Erica australis heathland (Bustares, Guadalajara, Spain, April 2015).

Narcissus postfire


Evolutionary fire ecology in pines

April 1st, 2015 No comments

Fire is an ancient and recurrent disturbance factor in our planet and has been present since the origin of terrestrial plants [1]. However, demonstrating whether fire has acted as an evolutionary force is not an easy task [2]. In this context, the emerging discipline of evolutionary fire ecology aims to understand the role of wildfires in shaping biodiversity. In a recent review paper I summarize what we have learned on evolutionary fire ecology by studying the iconic genus Pinus [3]. I suggest that the study of pines has greatly increased our understanding of the role of fire as an evolutionary pressure on plants.

Macro-evolutionary studies of the genus Pinus provide the oldest current evidence of fire as an evolutionary pressure on plants and date back to ca. 125 Million years ago (Ma). Micro-evolutionary studies show that fire traits are variable within and among populations, and especially among populations subject to different fire regimes. In addition, there is increasing evidence of an inherited genetic basis to variability in fire traits. Added together, pines provide compelling evidence that fire can exert an evolutionary pressure on plants and thus shape our biodiversity. In addition, evolutionary fire ecology is providing insights to improve the management of our pine forests under changing conditions. The lessons learned from pines may guide research on the evolutionary ecology in other taxa.

Figure: Example of trait divergence among populations living under different fire regime. Serotiny (as % of closed cones) in populations living under frequent crown fires (red boxes) and in populations where crown-fires are rare (green boxes) for two pine species, Pinus halepensis (Allepo pine, left) and P. pinaster (maritime pine, right).

[1] Pausas, J.G. and Keeley, J.E. 2009. A burning story: The role of fire in the history of life. Bioscience 59: 593-601. [doi | jstor | BioOne | pdf]

[2] Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J. & Bradstock, R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | sciencedirect | trends | pdf]

[3] Pausas, J.G. (2015) Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20(5): 318-324. [doi | sciencedirect | pdf]


Ecology and evolution in fire-prone ecosystems

February 28th, 2015 2 comments

During the last years I’ve been working in many topics related to fire ecology and plant evolution in ecosystems subject to recurrent fires (mainly mediterranean and savanna ecosystems). Because I believe knowledge should be spread around easily, I make my results available to the public in my web page (see publications list) and in this blog. However, having the cumulative list of paper published each year is not very convenient for people searching for a specific topic. For this reason, I’m rearranging most of my articles by topics as follows:

1. Fire history
2. Fire regime: climate & fuel
3. Fire traits (resprouting, postfire germination, serotiny, bark thickness, flammability, data & methods)
4. Fire & plant strategies (in Mediterranean ecosystems, in pines, in savannas, community assembly)
5. Fire & evolution
6. Some fire-adapted species (Pinus halepensis, Quercus suber, Ulex parviflorus)
7. Fire & vegetation modelling
8. Plant-animal interactions
9. Restoration & conservation

See: fire-ecology-evolution.html

Some papers may be repeated if they clearly fit in more than one topic; some papers, mainly old ones, do not fit well in any of these topics and have not been included (at least at the moment), they still can be found in the section of publications sorted by year. I’m still working on this rearrangement, so some modifications are possible; and any comment is welcome.
I hope this is useful for somebody!

Publications: by year | by topic | books


Alternative fire-driven vegetation states

November 1st, 2014 No comments

One of the clearest pieces of evidence for the role of fire in shaping vegetation is the occurrence of alternative vegetation types maintained by different fire regimes in a given climate. The different flammability of alternative communities generates different fire feedback processes that maintain contrasted vegetation types with clear boundaries in a given environment; and fire exclusion blurs this structure. This has been well documented in tropical landscapes (e.g., [1]) that are often mosaics of two alternative stable states – savannas and forests – with distinct structures and functions and sharp boundaries. Currently, there is an increasing evidence that alternative fire-driven vegetation states do occur in other environments, including temperate forests ([2, 3] and figure below). That is, the existence of alternative fire-driven vegetation states may be more frequent than previously thought, although human activities may favour one of the states and mask the original bistability.


Figure: Factors determining the transition between two alternative vegetation states (fire sensitive forest and fire resilient shrubland) in a temperate landscape in Patagonia. Human factors (global warming, increased ignitions, and livestock grazing) favour transition to shrublands. From [2].

[1] Dantas V., Batalha MA & Pausas JG. 2013. Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454-2463.  [doi | pdf | appendix]

[2] Pausas, J.G. 2015. Alternative fire-driven vegetation states. Journal of Vegetation Science 26: 4-6 [doi | pdf | suppl.]

[3] Paritsis J., Veblen T.T. & Holz A. 2014. Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J. Veget. Sci., 26.


Trait databases: BROT to EOL

October 26th, 2014 No comments

Some years ago we complied and published a database on plant traits related to fire for the Mediterranean basin, the BROT database [1, 2]. Now the Encyclopedia of Life (EOL,, which is an initiative to gather scientific knowledge about all animal and plant life on Earth, has incorporated the BROT database [link]! We are very happy that EOL consider BROT as a reliable source of information; this implies that our compilation effort is now much more widely accessible, with a friendly interface, and integrated with other sources of information. For instance, if you search a Mediterranean plant species in the EOL search engine (e.g., Cistus albidus), you get, a part from pictures, a description, and other details, a window with the trait information extracted from BROT (see the overview result here; you can also go to the full trait data). It is aslo possible to search by trait in all EOL databases ( Note however that we were not responsible for translating the BROT database to the EOL format, so any error or misinterpretation during this process is not our fault! In fact we have never been asked or notified that EOL was going to incorporate BROT, I found it just by chance …



[1]  Paula S, Arianoutsou M, Kazanis D, Tavsanoglu Ç, Lloret F, Buhk C, Ojeda F, Luna B, Moreno JM, Rodrigo A, Espelta JM, Palacio S, Fernández-Santos B, Fernandes PM, and Pausas JG. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90: 1420. [doi] [ESA journals] [Ecological Archives E090-094] [pdf]

[2] Paula S. & Pausas J.G. 2013. BROT: a plant trait database for Mediterranean Basin species. Version 2013.06. URL:


Heritability of serotiny

September 29th, 2014 No comments

Evolution by mean of natural selection requires three conditions: there is variation in the trait, this variation is linked to differences in fitness, and the variation is heritable (Darwin!). In many traits we do not have reliable information for the three processes. For a serotinous species, there is evidence that the level of serotiny is variable, and specially it varies in relation to the fire regime of the population. This is because serotiny increases fitness in crown-fire ecosystems and it is not advantageous in ecosystems that do not suffer frequent fires or in ecosystems with understory fires. We recently studied how serotiny of two pine species (Pinus halepensis and Pinus pinaster) varies within population and between populations with different fire regimes and also provided a meta-analysis of the relation between serotiny and fire from other published studies [1]. We also performed a genetic association study for serotiny using SNPs and showed that 17 loci explained ca. 29% of the serotiny variation found in the field in Pinus pinaster [2], suggesting that serotiny variation have a genetic basis. In our most recent paper we provide the first estimate of heritability for a fire trait; specifically we computed the norrow-sense heritability (h2) of serotiny in Pinus halepensis using the common garden approach [3]. We also evaluated whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QST – FST comparison). Serotiny showed a significant heritability (h2 = 0.20). The quantitative genetic differentiation among provenances for serotiny (QST= 0.44) was significantly higher than expected under a neutral process (FST = 0.12), suggesting adaptive differentiation. Overall we showed that serotiny is a heritable trait and that it has been shaped by natural selection driven by fire.

Figure: Serotinous cones of Pinus halepensis (Foto: J.G. Pausas)


[1] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100 (12): 2349-2356. [doi | amjbot | pdf | supp. | blog]

[2] Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdú, M. & González-Martínez, S.C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster Aiton). New Phytologist 201: 230-241.  [doi | pdf | supp1 | supp2]

[3] Hernández-Serrano, A., Verdú, M., Santos-Del-Blanco, L., Climent, J., González-Martínez, S.C. & Pausas, J.G. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany 114: 571-577. [doi | pdf | suppl.]


The Fire Ecology journal now on JCR

August 22nd, 2014 No comments

The journal Fire Ecology (FE) has now been included in the Journal Citation Reports database (2013 JCR Edition, ISI) and thus, it has an Impact Factor. The 2013 impact factor is 1.156 which suggests that it is still a very minor ecology journal (ranking: 28/64 in Forestry and 104/140 in Ecology) but given that it is of open access, it has some potential for increasing success. For comparison, the International Journal of Wildland Fire, which is a more multidisciplinary journal for fire science has an IF= 2.506 (ranking = 5/64 in Forestry); other classical ecology journals have a much higher impact factor (e.g., Journal of Ecology: 5.69, Ecology: 5.00, Oikos: 3.56, Oecologia: 3.25). The FE journal is still very USA-oriented, and a strong internationalization would be needed. The last issue of the journal is also available at ISSUU, so it can be read it from Android systems. I must admit I have never published or submitted any paper to this journal (see details). Good luck to the FE in this new period!


Journal archive in the web site of the Fire Ecology journal [link]

Evolutionary ecology of resprouting and seeding

July 15th, 2014 No comments

There are two broad mechanisms by which plant populations persist under recurrent fires: resprouting from surviving tissues, and seedling recruitment [1]. Species that live in fire-prone ecosystems can have one of these mechanisms or both [1]. In a recent review paper [2], we propose a model suggesting that changes in evolutionary pressures that modify adult (P) and juvenile (C) survival in postfire conditions (Fig. 1 below) determine the long-term success of each of the two regeneration mechanisms, and thus the postfire regeneration strategy: obligate resprouters, facultative species and obligate seeders (Fig. 2). Specifically we propose the following three hypotheses: 1) resprouting appeared early in plant evolution as a response to disturbance, and fire was an important driver in many lineages; 2) postfire seeding evolved under conditions where fires were predictable within the life span of the dominant plants and created conditions unfavorable for resprouting; and 3) the intensification of conditions favoring juvenile survival (C) and adult mortality (P) drove the loss of resprouting ability with the consequence of obligate-seeding species becoming entirely dependent on fire to complete their life cycle, with one generation per fire interval (monopyric life cyle). This approach provides a framework for understanding temporal and spatial variation in resprouting and seeding under crown-fire regimes. It accounts for patterns of coexistence and environmental changes that contribute to the evolution of seeding from resprouting ancestors. In this review, we also provide definitions and details of the main concepts used in evolutionary fire ecology: postfire regeneration traits, postfire strategies, life cycle in relation to fire, fire regimes (Box 1), costs of resprouting (Box 2), postfire seeding mechanisms (Box 3), and the possible evolutionary transitions (Box 4).


Fig. 1 : Main factors affecting adult and offspring seedling survival (P and C, respectively), and thus the P/C ratio, in fire-prone ecosystems (from Pausas & Keeley 2014 [2]).



Fig. 2: The changes in the probability of resprouting along an adult-to-offspring survival (P/C) gradient are not linear but show two turning points related to the acquisition of key innovations: the capacity to store a fire-resistant seed bank (postfire seeding), and the loss of resprouting capacity. Changes in P/C ratio may be produced by different drivers (Fig. 1) which drove the rise of innovations during evolution, e.g., during the increasing aridity from the Tertiary to the Quaternary (from Pausas & Keeley 2014 [2]).



[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [doi | pdf | esa | jstor]

[2] Pausas J.G. & Keeley J.E. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65 [doi | wiley | pdf]


Climate-independent fire regime changes

May 16th, 2014 No comments

It is well-known that fire regimes are strongly linked to climate, however, there are examples in which most variability in fire regime changes are better attributed to drivers other than climate. For instance, vegetation (fuel structure and continuity) also plays a role in shaping fire regimes [1-5]. In a recent paper [6], we reviewed evidences from different environmental and temporal settings of abupt fire regimes changes that are not directly attributed to climatic changes, but to changes driven by (i) fauna, (ii) invasive plant species, and (iii) socio-economic and policy changes. All these drivers might generate nonlinear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity and thus drastically change fire activity (figure below). The importance of climate-independent factors in abrupt fire regime changes can be viewed positively: while climate is very difficult to modify at short term, fuels can potentially be managed to shape fire regimes and to mitigate the effects of global warming [7]. However the success of these actions may be diverse, depending on the historical fire regimes and the adaptive traits of the species in the community [8].


Figure: Schematic representation of how a gradual change in a driver (e.g., a constant colonization or invasion of a flammable plant) can produce an abrupt change in landscape structure (e.g., continuity of the flammable vegetation). The bottom panel represents the changes through time in mean and maximum patch size in an idealized landscape that is invaded by plants (green cells) with a constant probability (p= 0.01 in each time step). The upper panel shows three snapshots of these dynamics (time steps = 25, 75 and 125, also represented by vertical lines in the bottom panel). From Pausas & Keeley [6].


[1] Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337-350. [pdf | doi]

[2] Pausas J.G. & Bradstock R.A. 2007. Fire persistence traits of plants along a productivity and disturbance gradient in Mediterranean shrublands of SE Australia. Global Ecology & Biogeography 16: 330-340.  [pdf | doi]

[3] Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082.  [doi | pdf | supp]

[4] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226.  [doi | springer | pdf]

[5] Pausas J.G. & Ribeiro E. 2013. The global fire-productivity relationship. Global Ecol. & Biogeogr. 22: 728-736. [doi | pdf | appendix]

[6] Pausas J.G. & Keeley J.E., 2014. Abrupt climate-independent fire regime changes. Ecosystems 17: 1109.1120 [doi | pdf] – New!

[7] Towards prescribed fires,, 7 Oct 2013.

[8] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi | trends | pdf]


Postfire blooming of Asphodelous

April 5th, 2014 No comments

The 4th of February, 2014, a forest fire burnt ca. 200 ha in Segorbe, near Valencia, eastern Spain. Two months later (1st April 2014), few plants had started to resprout, others had started to germinate, but there were three species that had resprouted very quickly and were already flowering: Asphodelous cerasiferus (= A. ramosus; Spanish: gamón), Iris lutescens, and Asparagus horridus; the first showed an spectacular blooming (pictures below).

Spectacular postfire bloom of Asphodelous cerasiferus in Segorbe, near Valencia, Spain (photos by MC Castellanos & JG Pausas, two months after fire).

Fire drives trait divergence: smoke-induced germination

April 3rd, 2014 No comments

There is an increasing evidence that recurrent fires are driving within species phenotypic variability, and that different fire regimes can generate trait divergence among populations [1]. For instance, populations of the annual species Helenium aromaticum (Asteraceae) growing under different fire histories in Chile have different seed traits in such a way that the anthropogenic increase in fire frequency selected for an increasing in seed pubescence [2]. In the Mediterranean Basin there is also evidence of phenotypic divergence among populations under different fire regimes: Ulex parviflorus (Fabaceae) plants living under high fire frequency are more flammable than those growing in sites that have not suffered fires [3-5]; Pinus halepensis and P. pinaster living under high crown-fire frequency have higher serotiny that those living in areas that rarely burn in crown fires [6]

A recent paper add further examples of this fire-driven trait divergence: Vandvik et al. show that smoke-induced germination is observed in populations of Calluna vulgaris (Ericaceae) from traditionally burnt coastal heathlands of Norway but it is lacking in populations from other habitats with infrequent fires [7]. The results are also consistent with the suggestion that smoke-induced germination is a fire adaptation [8-9].


Figure: Probability of germination of Calluna vulgaris in relation to time (days) since sowing for smoke-treated (pink) and control (grey) seeds, in coastal and inland heathlands of Norway. From Vandvik et al. 2014 [7].


[1] Pausas, J. G. and D. W. Schwilk. 2012. Fire and plant evolution. New Phytologist 193 (2). [doi | pdf | blog]

[2] Gómez-González S, Torres-Díaz C, Bustos-Schindler C, Gianoli E, 2011. Anthropogenic fire drives the evolution of seed traits. PNAS 108: 18743-18747. [doi blog]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | pdf | blog]

[4] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613. [doi | wiley | pdf]

[5] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223. [doi | pdf | suppl. | data:dryad | blog]

[6] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100 (12): 2349-2356. [doi | amjbot | pdf | supp. | blog]

[7] Vandvik, V., J. P. Töpper, Z. Cook, M. I. Daws, E. Heegaard, I. E. Måren, and L. G. Velle. 2014. Management-driven evolution in a domesticated ecosystem. Biology Letters 10 (2): 20131082. [doi]

[8] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | jstor | BioOne | pdf | scribd | ppt slides | post]

[9] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi | trends | pdf]


New fire books

March 23rd, 2014 No comments

Two new fire books has been recently published! And both have a global and interdisciplinary perspective. The first is edited by Claire Belcher (2013; [1]), and each of the 16 chapters is a scientific article written by different specialists (a total of 25 different authors, many of them from UK institutions); it includes few colour plates. As the publisher says, “the book shows how knowledge of fire phenomena and the nature of combustion of natural fuels can be used to understand modern wildfires, interpret fire events in the geological record and to understand the role of fire in a variety of Earth system processes ”. This book has perhaps little on fire ecology, and it is more focussed on fire history at the geological scale, combustion details and atmospheric impacts; all these topics are important for understanding fires at the global scale. The second book (Scott et al. 2014; [2]) is a full-colour textbook on fire written by five authors (two of them had also participated in the other book). This is probably the first general textbook on fire science ever published, and as such it covers all topics related to fire although with relatively little depth. Thus it provides a summary of the current knowledge on fire at a global scale. In the words of the publisher, it “is designed to provide a synthesis of contemporary thinking; bringing together the most powerful concepts and disciplinary voices to examine, in an international setting, why planetary fire exists, how it works, and why it looks the way it does today”.


[1] Belcher, C.M. (ed) 2013. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. Wiley.

[2] Scott, A.C., Bowman, D.M.J.S., Bond, W.J., Pyne, S.J. & Alexander, M.E. 2014. Fire on Earth: An Introduction. Wiley.

New fire book in 2012: link


Proyecto VIRRA

February 28th, 2014 No comments

El proyecto “El papel del fuego en la Variabilidad Intraespecífica (fenotípica y genética) de plantas del matoRRAl mediterráneo (VIRRA)” finalizó hace unos meses. Aquí se puede ver un resumen y los principales productos de este proyecto: enlace.

Ulex parviforus_juli_sm

La aliaga (Ulex parviflorus) es una de las principales especies estudiadas en VIRRA [1, 2].

[1] Ulex born to burn,, 9/Nov/2011

[2] Ulex born to burn (II): genetic basis of plant flammability,, 25/Jan/2014

Ulex born to burn (II): genetic basis of plant flammability

January 25th, 2014 No comments

In an previous study we found that Ulex parviflorus (Fabaceae) populations that inhabit in recurrently burn areas (HiFi populations) were more flammable than populations of this species growing in old-fields where the recruitment was independent of fire (NoFi populations) [1,2, 3]. That is, HiFi plants ignited quicker, burn slower, released more heat and had higher bulk density than NoFi plants. Thus, it appeared that repeated fires selected for individuals with higher flammability, and thus driving trait divergence among populations living in different fire regimes. These results were based on the study of plant flammability (phenotypic variability) without knowing whether plant flammability was genetically controlled. In a recent study using the same individuals [4], we show that phenotypic variability in flammability was correlated to genetic variability (estimated using AFLP loci) [figure below]. This result provide the first field evidence supporting that traits enhancing plant flammability have a genetic component and thus can be responding to natural selection driven by fire [5]. These results highlight the importance of flammability as an adaptive trait in fire-prone ecosystems.


Figure: Relationship between flammability and genotypic variability at individual level in Ulex parviflorus (red symbols: individuals in HiFi populations; green symbols: individuals in NoFi populations). Variations in flammability are described using the first axis of a Principal Component Analysis (PCA1) performed from different flammability traits, and genetic variability is described using the first axis of a Principal Coordinate Analysis (PCo1) from the set of AFPL loci that were significantly related to flammability. See details in [4].

[1] Ulex born to burn,, 9/Nov/2011

[2] Pausas J.G., Alessio G., Moreira B., Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193:18-23 [doi | wiley | pdf]

[3] Pausas J.G. & Moreira B. 2012. Flammability as a biological concept. New Phytologist 194: 610-613.  [doi | wiley | pdf]

[4] Moreira B., Castellanos M.C., Pausas J.G. 2014. Genetic component of flammability variation in a Mediterranean shrub. Molecular Ecology 23: 1213-1223 [doi | pdf | data:dryad]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16: 406-411. [doi | trends | pdf]



November 16th, 2013 No comments

Serotiny is the delayed seed release for more than a year by retaining the seeds in a woody structure [1]. This implies an accumulation of a canopy seed bank. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat opens the cones and seeds are dispersed in the post-fire bed which is rich in resource and the competition and predation are low. It is typical of many Proteaceae and some conifers, like some pine species [1, 2; figure below].

Two recent papers analyse the serotiny of two mediterranean pines Pinus halepensis and Pinus pinaster [3, 4]. P. halepensis show higher proportion of serotinous cones than P. pinaster, but the latter retain the cones for longer [3]. The two species show high variability of serotiny within and between populations, but they show a clear pattern of higher serotiny in populations subject to high frequency of crown-fires than those living in areas where crown-fires are rare or absent. This is true either considering serotiny as the proportion of serotinous cones or as the age of the cones stored. Compared with other pines worldwide, the strength of the fire-serotiny relationship in P. pinaster is intermediate, and in P. halepensis is among the highest known [3]. For P. halepensis (the species with higher % serotiny), populations in high fire recurrence regimes have higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. This phenotypic spatial structure generated by fire could be a consequence of the spatial genetic structure of the population. The second study used genomic tools to search for a genetic association for serotiny [4]. The analysis of 384 SNPs of 199 individuals of P. pinaster (in 3 populations included in the previous study [3])  shows that 17 loci were associated with serotiny and explain all together ca. 29% of the serotiny variation found in the field. All these results adds further evidence to the emerging view that fire shapes intraspecific variability of traits and generates phenotypic divergence between populations [5, 6, 7].

Figure: Serotinous cones of Pinus pinaster (Foto: K.B. Budde)


[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press.  [The book]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194: 751-759. [doi | wiley | pdf (suppl.)]

[3] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356 [doi | amjbot | pdf | supp.]

[4] Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdú, M. & González-Martínez, S.C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster Aiton). New Phytologist  201: 230-241 [doi | pdf]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi] [trends] [pdf]

[6] Pausas, J. G., Schwilk, D. W. 2012. Fire and plant evolution. New Phytologist, 193:301-303. [doi | wiley | pdf]

[7] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | wiley | pdf]


Physiological differences between resprouters and seeders

November 9th, 2013 No comments

The ability to resprout and to recruit after fire are two extremely important traits for the persistence in fire-prone ecosystems [1,2], and they define three life histories: obligate resprouters, obligate seeders (non-resprouters), and facultative seeders. After a fire, obligate seeders die and recruit profusely from the seeds stored in the seed bank [3-5]. In contrast, resprouters survive after fire and their above-ground tissues regenerate from protected (often below-ground) buds by using stored carbohydrates [6]. Facultative seeders not only recruit profusely after fire, but are also able to resprout. In fact, seeders and resprouters have different regeneration niches: seedling regeneration of obligate resprouters is not linked to fire, and they recruit during the inter-fire period under sheltered conditions (i.e., under vegetation cover), while seedling regeneration of seeders occurs in open postfire environments. Given the marked difference in water availability between microsites under vegetation and microsites open to the sun under Mediterranean conditions, seedlings of resprouters and seeders are subjected to different water-stress conditions, and thus they are expected to have different physiological attributes. Despite these differences, resprouters and seeders co-exist, are often well-mixed on local and landscape scales [7,8], and represent the two main types of post-fire regeneration strategies in Mediterranean ecosystems [2].

A recent study demonstrates marked differences in physiological attributes between seedlings of seeders and resprouters [9]: Seeders show a range of physiological traits that better deal with water-limited and highly variable conditions (e.g., higher resistance to xylem cavitation, earlier stomatal closure with drought, higher leaf dehydration tolerance), but they are also capable of taking full advantage of periods with high water availability (greater efficiency in conducting water through the xylem to to sustain high gas exchange rates when water is available). Conversely, resprouter species are adapted to more stable water availability conditions, favoured by their deeper root system, but they also display traits that help them resist water shortages during long summers.

Previous studies already showed marked differences between seeders and resprouters in a range of attributes: resprouters tend to exhibit a deeper root-system, while seedling root structure of seeders are more efficient in exploring the upper soil layer [10]. Leaves of seeders show higher water use efficiency (WUE) and higher leaf mass per area (LMA; i.e., higher sclerophylly, lower SLA) [11]. Seeds of seeder species are more tolerant to heat shocks and have greater heat-stimulated germination [3]. All these differences support the idea that they are distinct syndromes with different functioning characteristics at the whole plant level and suggest that they undertook different evolutionary pathways [12].

Figure: Coexistence of resprouters (R+) and seeders (R-) in postfire conditions near Valencia, Spain. (Foto: A. Vilagrosa).



[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [jstor |[pdf | Ecological Archives E085-029]

[2] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]

[3] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [doi | pdf]

[4] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [doi | pdf | blog]

[5] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(12): e51523. [doi | plos | pdf | blog]

[6] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121: 1577-1584. [doi | pdf]

[7] Verdú M, & Pausas JG 2007. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities Journal of Ecology 95 (6), 1316-323 [doi | pdf]

[8] Ojeda, F., Pausas, J.G., Verdú, M. 2010. Soil shapes community structure through fire. Oecologia 163:729-735. [doi | pdf | blog]

[9] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201 : xx-xx [doi | pdf | suppl.] – NEW

[10] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331. [doi | pdf | blog]

[11] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [doi | pdf | blog]

[12] Verdú M. & Pausas J.G. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. Evolution 67: 1756-1766. [doi | pdf | blog]


Towards prescribed fires

October 7th, 2013 No comments

In the latest issue of Science (Oct 4th, 2013), there is a forum paper with some suggestion for the management of fires and forests in the face of changing climates [1]. Basically, the authors suggest that policy focused on fire suppression only delays the inevitable, promising more dangerous and destructive forests fires. They emphasize the importance of strategically managing wildfires and the use of prescribed fires in combination with mechanical fuel treatments to create fire resilient landscapes. In addition, the journal Frontiers in Ecology and Environment has recently published an special issue on prescribed burns in different ecosystems worldwide [2]. Fires are very important processes on many ecosystems [3,4], and what is important is to shape fire regimes to be sustainable (socially and ecologically). A zero-tolerance fire policy (which still dominates in many countries) cannot work in the long-term, especially in seasonal climates, as the high fuel accumulation coupled with a warming climate may drive the system to large and intense fires that threaten both people and biodiversity; and this may occurs despite major economic investments in fire prevention and suppression.

Foto: Prescribed understory burn of a mixed conifer forest in the Sierra Nevada, California. From [3].

[1] Stephens, S.L., Agee, J.K., Fulé, P.Z., North, M.P., Romme, W.H., Swetnam, T.W., Turner, M.G., 2013. Managing forests and fire in changing climates. Science 342, 41-42.

[2] Perspectives on prescribed burning. Front. Ecol. Environ. 11,

[3] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | pdf]

[4] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]


Smoke-stimulated recruitment

September 16th, 2013 No comments

In many plant species from mediterranean ecosystems, germination is promoted by fire [1]; this effect may be driven by the heat [e.g., 2-4] or by the chemicals produced by the fire (e.g., smoke, 4,5]). Most information regarding to smoke-stimulated germination in the Mediterranean Basin comes from a few experiments performed in laboratory conditions. This approach does not consider factors that occur in the field, such as species interactions, density-dependent processes or the fact that seeds spent time in the soil. A recent field experiment performed in eastern Spain show that smoke increase overall seedling recruitment, specially seedlings of annual plant species [6]. However, despite most species had higher seedling establishment in the smoke than in the control subplots, there were very few species in which the effect of smoke was statistically significant, suggesting that the community response to smoke cannot be inferred from individual species; it is the sum of small differences in each species towards the same direction that produces a significant pattern at community scale. This emerging property of the community is often neglected by only considering germination experiments in the laboratory. The results also suggest that the effect of smoke in annual species of the Mediterranean Basin might be more relevant than previously thought.

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]

[2] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [pdf | doi]

[3] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7: e51523. [doi | plos | pdfblog]

[4] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [pdf | doi | post]

[5] Smoke-stimulated germination,, 2/Dec/2011.

[6] Tormo, J., B. Moreira, and J. G. Pausas. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. Journal of Vegetation Science 25: 771-777 [doi | wiley | pdf]