Archive

Posts Tagged ‘regeneration’

POSTDIV: Postfire biodiversity database

December 10th, 2023 No comments

In the summer of 2012, two wildfires affected Mediterranean ecosystems in the eastern Iberian Peninsula, the Andilla fire and the Cortes fire [1]. The size of these fires (> 20,000 ha each) was at the extreme of the historical variability (megafires sensus [2]). In 2013, we set up 12 plots per fire, covering burned vegetation at different distances from the fire perimeter and unburned vegetation. In each plot, we followed the postfire recovery of arthropods, reptiles (including their ectoparasites), and plants for 2 to 5 years. Here we present the resulting database (POSTDIV) of taxon occurrence and abundance in the burned and unburned areas [3]. Currently, POSTDIV totals 19,906 records for 457 arthropod taxa (113,681 individuals), 12 reptile taxa (503 individuals), 4 reptile parasites (234 individuals), and 518 plant taxa (cover-abundance). We provide examples in the R language to query the database.

Wildfires 2012
The two wildfires occurred simultaneously in Valencia during the 2012 summer (photo: 30 Junio 2012).
POSTDIV database structure. The database is composed of six data tables (blue boxes). For more details, see [3].

References

[1] Pausas J.G. 2012. Life 15 days after the large fires in Valencia. jgpausas.blogs.uv.es/2012/07/22/

[2] Pausas J.G. & Keeley J.E. 2021. Wildfires and global change. Front. Ecol. Environ. 19: 387-395. [doi | wiley | pdf]

[3] Pausas et al. 2023. Postfire biodiversity database for eastern Iberia. Sci Data 10:872 [doi | pdf | pdf | data: figshare

Conferencia: Incendios y biodiversidad

September 17th, 2023 No comments

El día 16 de septiembre de 2023 impartí una conferencia titulada ‘Incendios forestales y biodiversidad’ en la sede de Ecologistas en Acción (Madrid). Aquí está disponible (incluye la sesión de preguntas al final).

Postfire flowering: Narcissus assoanus

March 23rd, 2023 No comments

Spectacular postfire flowering of Narcissus assoanus 7 month after fire (Costur 8/2022, Castelló, E Spain).

More on: postfire flowering | Narcissus | regeneration | resprouting | fire ecology 

Seed dormancy, bet-hedging, and best-bet

September 2nd, 2022 No comments

Seed dormancy is a key plant characteristic that occurs among many species worldwide. One mechanism that select for seed dormancy is the bet-hedging strategy. In unpredictable environment (i.e., with high interannual variability) there is a benefit in spreading the germination over a number of years to reduce year-to-year variation in fitness but taking advantage of exceptionally good years for establishment. In those environments, seed dormancy is adaptive; each year there is a small fraction of the seed crop that germinates and the other seeds remain dormant in the soil. Because the environmental conditions of most years are poor, successful establishment only occurs in good (wet) years. Thus bet-hedging selects for seed dormancy and it is a mechanism for living in highly unpredictable environments such as arid ecosystems [1]

There is another environmental setting that also selects for seed dormancy: seasonal (predictable) climate with a dry season during which the vegetation is highly flammable and thus wildfires are frequent (e.g., mediterranean, savanna, warm temperate, and dry boreal ecosystems). In those ecosystems, seed dormancy is adaptive and fire provide both a mechanism for dormancy release (proximate cause) and conditions (postfire) optimal for germination and establishment (low competition, high resource availability, low predation, low pathogen load) that increase fitness and allow maintenance of the population (ultimate cause) [1,2]. Dormant seeds survive the passage of fire and the heat or the chemicals from the combustion (collectively called ‘smoke’ [2,3]) are the stimulus for the seed to recognize a fire gap to germinate. That is, postfire recruitment occurs in a single pulse after fire. Here selection does not favor spreading the risk of recruitment failure over many years (as in the bet-hedging strategy) but, instead, maximizes germination in a single year when conditions are optimal, after fire. We call this strategy the best-bet strategy [1] or environmental matching [2]. This strategy selects for seed dormancy to accumulates seeds in the soil seedbank but also selects for serotiny to accumulate seeds in the canopy seedbank [4]; in both cases, species recruit mostly after fire and not during the interfire period.

There is a further driver that selects for seed dormancy but it does not imply the formation of seed banks (in contrast with bet-hedging and best-bet). Many seeds have acquired seed dormancy to facilitate long-distance dispersal. The clearest example is dispersal by vertebrate frugivores (endozoochory). Frugivores consume the fruit pulp and defaecate or regurgitate the seeds far from the mother plant. This means that seeds need to resist passage through the gut and remain intact until arriving at a new microsite for germination. Thus, seeds of fleshy fruited species typically are dormant, and scarification through the gut releases their dormancy. While bet-hedging spreads germination of seeds over time, this strategy spread the seeds across the space and thus it could be viewed as a spatial bet-hedging strategy.

Figure: Schematic representation of the dynamics of seed recruitment for plants lacking seed dormancy (nondormant; top panel), and for plants with dormant seeds following the bet-hedging strategy (middle panel) and the best-bet strategy (bottom panel). The figure shows the moment of flowering (red asterisk; spring), the germination (black bars; autumn), the seed bank in autumn (empty bars), the recruitment 2 months later (green bars) and the fire (flame; summer). As an example, the seasons are considered as in the Northern Hemisphere, and vertical dotted lines are the end of the year. From [1]
Table: Main characteristics of the evolutionary strategies that select for seed dormancy and seed banks (bet-hedging, best-bet), together with the nondormant strategy.

References

[1] Pausas JG, Lamont BB, Keeley JE., Bond WJ. 2022. Bet-hedging and best-bet strategies shape seed dormancy. New Phytol. [ doi | wiley | pdf]

[2] Pausas JG. & Lamont BB. 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97: 1612-1639. [doi | pdf | supp. mat. | data (figshare)

[3] Keeley JE & Pausas JG. 2018. Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African J. Bot. 115: 251-255. [doi | pdf]  

[4] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Rev. Pl. Sci. 39:140-172. [doi | pdf | suppl.]

Prescribed burns in Valencia

May 31st, 2022 No comments

Prescribed burns has only been introduced in the Valencia region (eastern Iberia) very recently (end of 2019), and are undertaken by the Valencia government. One of the first burns was performed Castell de Castells (Alacant province) in March 2021, it was of relatively low intensity (compare with natural wildfires in the area). The area was dominated by a mediterranean shrublands with few young pines (P. halepensis). One year latter the area is a paradise of flowers; below are a few of them. Thank you to J. Fabado and X. Riera (Jardí Botànic de Valencia) for their help in the species names.

Castell de Castells burn, March 2021
Castell de Castells, May 2022
First row: Reseda (alba) valentina, Tulipa australis, Sarcocapnos enneaphylla / Second row: Linaria_depauperata, Teucrium homotrichum_ronniger, Neotinea_maculata / Third row: Argyrolobium zanonii, Phlomis lychnitis, Teucrium pseudochamaepitys / Fourth row: Anagallis arvensis, Asphodelus cerasiferous, Aphyllantes monspeliensis. Photos by JG Pausas except Linaria by B. Moreira.

Incendios forestales: encrucijada natural y social

December 28th, 2018 No comments

En febrero de 2018, poco después del incendio de Doñana (Las Peñuelas, 2017), la Academia de Ciencias Sociales y el Medio Ambiente de Andalucía organizó en Sevilla un seminario sobre regeneración después de incendios. A partir de ese seminario, se ha realizado un libro con algunas de las ponencias. Tuve la suerte de que me invitasen a dar la charla inaugural del seminario y a escribir un capitulo introductorio en el libro. Aquí abajo copio algunos fragmentos de mi capítulo. El texto entero del capítulo está disponible en PDF aquí. El libro entero también está disponible en PDF aquí y en en la Academia

 

Incendios

Los incendios forestales constituyen procesos complejos, a muchas escalas. Los físicos aún tienen enormes dificultades para modelar y predecir el comportamiento del fuego a escalas temporales y espaciales pequeñas, debido a la complejidad de la vegetación y las interacciones con los parámetros meteorológicos. A escalas mayores, en paisajes heterogéneos, con historia, y con personas asentadas en él, la complejidad es enorme. Prueba de ello es que el llamado ‘problema’ de los incendios forestales no está resuelto ni en nuestro país ni en ningún otro. Parte de la dificultad probablemente resida en un enfoque poco apropiado para abordar el tema. Lo más probable es que se necesite un cambio de paradigma en cuanto a cómo entendemos los incendios forestales en nuestros paisajes. Para este cambio de paradigma se requiere acumular evidencias, cultivar el pensamiento crítico, y romper algunos mitos. Aquí estamos para contribuir a ello.

Régimen de incendios

El clima mediterráneo es propenso al fuego porque tiene una vegetación densa, una estación seca, y tormentas secas (que provocan igniciones). Por lo tanto, como mínimo, hay incendios desde que tenemos clima mediterráneos (hace unos pocos millones de años), aunque hay evidencias de carbones fósiles producto de incendios desde que las plantas colonizaron el medio terrestre. A lo largo de la historia geológica el régimen de incendios ha ido cambiando, es decir, han ido cambiando características tales como la frecuencia, la intensidad, la estacionalidad, el tamaño, o el tipo de propagación. Y estos cambios han sido debidos a las variaciones a escala geológica de la concentración de oxígeno en la atmósfera, a cambios en el clima y en la vegetación, y a variaciones en la abundancia y tipo de herbívoros.

A una escala temporal más reciente (humana), los regímenes de incendios se han ido modificando según el uso del fuego, los cambios antropogénicos del paisaje, de la ganadería/pastoreo, de las políticas de gestión y, finalmente, los cambios climáticos recientes (antropogénicos). Todos estos cambios han ido modificando el régimen de incendios en diferentes direcciones, a veces de manera abrupta. Por ejemplo, el aumento de la población está asociado a un mayor número de igniciones; el incremento de la agricultura está asociado a la disminución de los incendios; y el reciente abandono rural conllevó un incremento de estos, especialmente de su tamaño. De manera que la dinámica del régimen de incendios está fuertemente ligada a cambios socio-económicos.

Adaptaciones

La larga historia de incendios ha conllevado que muchas plantas mediterráneas tengan rasgos o estrategias que les confieren supervivencia y capacidad de reproducción en ambientes con incendios recurrentes (rasgos adaptativos a los incendios). Existe una variedad de rasgos de este tipo; por ejemplo, muchas plantas rebrotan muy bien aunque se quemen totalmente, gracias a tener yemas en estructuras subterráneas protegidas por el suelo, o protegidas debajo de cortezas gruesas. Otras especies germinan de manera abundante después de los incendios, y así aprovechan la elevada disponibilidad de recursos tras el paso del fuego; y en muchos casos, estas especies aumentan su tamaño poblacional respecto al tamaño previo al incendio. Otras especies florecen rápida y abundantemente después de un fuego, aprovechando las condiciones favorables. Todo ello genera una frenética actividad de plantas y animales durante la primavera después de los incendios. La gran mayoría de plantas mediterráneas presenta alguna de estas estrategias para vivir en zonas con incendios recurrentes (ver aquí), aunque cambios bruscos en el régimen pueden conllevar problemas ecológicos.

Los bosques no son la única alternativa

Aunque la vegetación potencial de muchos ecosistemas pueda ser el bosque cerrado, la larga historia de incendios ha producido la apertura en los bosques de manera tan recurrente que han evolucionado especies típicas de matorrales abiertos que ni siquiera pueden vivir dentro del bosque. De hecho no es raro encontrar matorrales más diversos que bosques. Por lo tanto, la sociedad debería poner más en valor los ecosistemas que no son bosques, tales como los matorrales, las dehesas y los pastizales; todos ellos con una elevada diversidad en nuestro territorio. El fuego genera espacios abiertos, y da oportunidad a especies heliófilas, tanto de plantas como de animales. Sin incendios recurrentes nuestro paisajes serían más pobres en especies.

Incendios en el antropoceno

A pesar del carácter natural y antiguo de los incendios, el incremento de igniciones (aumento de la población urbana en ambientes semi-rurales), la elevada continuidad de la vegetación (por abandono rural y falta de herbívoros), y el cambio climático, junto con la política de exclusión del máximo número de incendios, nos lleva en conjunto muy a menudo a regímenes de incendios fuera del rango histórico, donde la mayor frecuencia de incendios de grandes dimensiones podría generar problemas ecológicos y sociales. En un mundo con climas y paisajes cambiantes, la gestión de los incendios (que no la exclusión o extinción), resulta de suma importancia.

La gestión debe partir del conocimiento de que los incendios son propios de los ecosistemas mediterráneos. La política de tolerancia cero a los incendios no ha funcionado en ningún país del mundo. El reto de la gestión no debería ser eliminar los incendios, sino crear paisajes que generen regímenes de incendios sostenibles tanto ecológica como socialmente. Eliminarlos es imposible, antinatural y ecológicamente insostenible. Para generar esos paisajes resilientes se precisan acciones a distintos niveles, tales como aceptar abiertamente un cierto régimen de incendios, crear discontinuidades en paisajes forestales homogéneos (por ejemplo, mosaicos agrícola-forestales), o reducir el combustible (pastoreo y quemas prescritas) en zonas estratégicas o próximas a viviendas.  También implica decisiones tan conflictivas como limitar la interfaz urbano-forestal, es decir, limitar la expansión de urbanizaciones y polígonos industriales en zonas rurales y naturales. A los efectos ambientales que supone la expansión de estas zonas de interfaz (por ejemplo, en biodiversidad, especies invasoras, contaminación lumínica y visual, etc.), hay que añadir que constituyen una gran fuente de igniciones, y que convierten en catastróficos (socialmente) incluso a regímenes de incendios ecológicamente sostenibles.

En conclusión

Se están acumulando evidencias que sugieren que hasta ahora teníamos una visión muy incompleta y sesgada de los incendios forestales, relegándolos a un factor externo que destruye ecosistemas y genera problemas ecológicos y sociales. Los estudios realizados en los últimos años sugieren un cambio de visión, donde los incendios constituyen una característica interna de los sistemas socio-ecológicos, una perturbación natural en muchos ecosistemas y una herramienta de gestión para moldear los regímenes de incendios futuros. Por ello se requiere que aprendamos a convivir con los incendios. Este cambio de paradigma se hace más urgente con el cambio climático, ya que la actividad de incendios está aumentando, y solo se puede abordar si se integra los incendios y el fuego dentro de nuestros sistemas socio-ecológicos.

 

Lecturas relacionadas

Pausas J.G. 2012. Incendios forestales. Catarata-CSIC. [Libro]

Pausas J.G. & Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecol. & Biogeogr. 21: 1074-1082. [doi | pdf | supp]

Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

Chergui B., Fahd S., Santos X., Pausas J.G. 2018. Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems 21: 619–628. [doi | pdf | post]

Pausas J.G. 2018. Incendios: cambios recientes y soluciones. jgpausas.blogs.uv.es/2018/06/19

Pausas J.G. 2018. Incendios forestales, encrucijada natural y social. En: Ecología de la regeneración de zonas incendiadas (García Novo F., Casal M., Pausas J.G.). Academia de Ciencias Sociales y del Medio Ambiente de Andalucía. pp. 9-14. [pdf | libro]

Pausas J.G. & Millán M.M. 2019. Greening and browning in a climate change hotspot: the Mediterranean Basin. BioScience. [doi | pdf]

 

Llutxent 1 month postfire

September 18th, 2018 No comments

In early August a wildfire ignited by a lightning burned about 3200 ha, affecting mainly the municipalities of Lutxent, Gandia and Pinet (in Valencia, Spain). One month later I visited the area, and below are the main plant species that were already resprouting. There were also two species already flowering, both geophytes: Urginea (Drimia) maritima and Scilla autumnalis; they showed flowers but not the leaves (they are protanthous: flowering before the foliage appears [1]). There were also many seedling germination from the seedbank, but they were too small to identify. 

The area affected by the fire include a small marginal population of Quercus suber (cork oak; el surar de Pinet) that we had studied few years ago [2]. This oak was also resprouting (epicormically).

(click to the photo to enlarge)

 

Notes and references

[1] The terminology of the flower/leaf phenology is a bit confusing; here is my understanding following Simpson (Plant Systematics, 2011) and Lamont & Downes (2011, Pl. Ecol. 212):

· Synanthous (syn= same time): flowers and leaves develop at the same time
· Hysteranthous: flowering occurring out of phase with leafing
· Protanthous (pro= early): flowers develop before the leaves
· Seranthous (ser= delayed): flowers develop after the leaves

[2] Pausas J.G., Ribeiro E., Dias S.G., Pons J. & Beseler C. 2006. Regeneration of a marginal Cork oak (Quercus suber) forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17: 729-738. [pdf | doi | wiley]

More on postfire flowering | Quercus suber (cork oak)

Thanks to E. Laguna for his help on the species identification.

 

Marjal del Moro postfire

May 3rd, 2018 No comments

‘Marjal del Moro’ is a small coastal wetland located in the municipalities of Puçol and Sagunt (Valencia, Spain). It is a Special Area of Conservation (SAC; ZEC in Spanish) and a Special Protected Area for the conservation of birds (SPA; ZEPA in Spanish), of the European Union. In January the 4th a wildfire burned 320ha which is ca. 80% of the wetland. Here are some dynamics after the fire.

1 month after the fire (18th February 2018):

At this time, Tamarix trees (salt ceder) were not resprouting, but some other plants already started to resprout (click to enlarge):

 

4 months after fire (1st May 2018):

Note that the two trees (salt ceders, Tamarix) are the same ones from the picture above (taken in February). At this time, Tamarix species were already resprouting (click to enlarge):

 

Thanks to E. Laguna for his help on the species identification.

 

Reflexiones para la restauración posincendio en Chile

March 28th, 2018 No comments

A principios de septiembre de 2017, tuve la oportunidad de visitar algunas de las zonas afectadas por los grandes incendios ocurridos en Chile durante el verano austral (finales del 2016 e inicios del 2017). Aquí un resumen de esa visita.

Algunas reflexiones de esa visita:

Pausas J.G. 2017. Reflexiones para la restauración ecológica: visita a las zonas afectadas por incendios en la región de O’Higgins (Chile central). Chile Forestal, 387:51-53 [pdf | conaf]

 

Vídeo ilustrativo (realizado por la CONAF):

 

Ejemplos de la regeneración de la vegetación nativa: rebrotes 7 meses posincendio (pinchar para ampliar)

 

Regeneración de las plantaciones: 7 meses posincendio

 

Más información sobre incendios forestales en Chile

Agradecimientos: Cristian Ibáñez (Unversidad de La Serena), Andrés Meza (CONAF), Susana Paula (Universidad Austral)

Incendios Chile 2017: restauración y regeneración

September 17th, 2017 No comments

Los incendios del verano 2016/2017 en Chile central afectaron alrededor de unas 600,000 ha [1]. Ahora, y como es natural, la sociedad demanda la restauración urgente de los ecosistemas nativos afectados (>60% de la zona afectada fueron plantaciones forestales [1,2]). La restauración ecológica debe estar basada en el conocimiento, y no se debe realizar de manera generalizada y arbitraria. Una restauración inapropiada es un gasto económico innecesario y a veces incluso perjudicial para el ecosistema; por ejemplo, realizar plantaciones con maquinaria pesada en un ecosistema donde muchas plantas rebrotan después del incendio puede ser contraproducente, ya que puede limitar la regeneración natural. Por lo tanto, las acciones de restauración ecológica requieren de un diagnóstico del terreno previo [3] en el que se evalúe el potencial de erosión del suelo, el potencial de regeneración natural, y la potencial pérdida de especies (incluyendo los efectos de posibles especies invasoras posincendio). Las acciones de restauración deben ser específicas para cada una de las zonas donde se detecten estos problemas dentro del perímetro incendiado. Probablemente no se requerirá restauración alguna, aunque si un control del pastoreo, en aquellos sectores en los que no haya peligro de pérdida de suelo y la regeneración de la vegetación y de la mayoría de especies no esté comprometida. Se requieren actuaciones urgentes en zonas con pérdida potencial de suelo. Y en zonas sin riesgo de erosión, pero con pérdida de especies, se requieren acciones restaurativas a medio-largo plazo (por ejemplo, plantaciones con especies nativas).

A inicios de septiembre de 2017 (6–7 meses después de los incendios) muchas de las especies del matorral esclerófilo afectado por los incendios estaban rebrotando (fotos abajo); algunas otras estaban germinando (p.e., el tevo), aunque la mayoría de germinaciones observadas eran plantas herbáceas. También se observaron pies de especies arbustivas que no habían rebrotado (y que no se pudo determinar la especie), aunque no se puede asegurar que no lo hagan en los próximos meses. Sería interesante saber si en los sectores quemados hay especies que no rebrotan ni germinan después del incendio, pues las poblaciones de estas especies si habrían sido gravemente perjudicas por el fuego, y serían las especies a considerar en una restauración ecológica de la zona.


Fotos: Ejemplos de especies que estaban rebrotando a inicios de septiembre (7 meses después de los incendios): A: Tevo (Trevoa trinervis); B: Litre (Lithraea caustica); C: Quillaia (Quillaja saponaria); D: Bollén (Kageneckia oblonga); E: Mitique (Podanthus mitiqui); F: Patagua (Crinodendron patagua); G: Berberis sp.; H: Boldo (Peumus boldus).

Referencias
[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10/
[2] Chile 2017 fires: fire-prone forest plantations, jgpausas.blogs.uv.es/2017/09/16/
[3] Investigador aborda desafíos de la restauración ecológica tras los incendios en Chile; www.lignum.cl/2017/09/06/

Más información sobre: incendios en Chile | rebrote |

 

Chile 2017 fires: fire-prone forest plantations

September 16th, 2017 No comments

During the 2016/17 fire season in central Chile, wildfires burned about 600,000 ha, a record for the region (most of the area burned between 18-Jan and 5-Feb, 2017). Two factors are considered the main responsible of such a large area burned: (1) an intense drought with strong head waves (January was the hottest month in record), and (2) the fact that the region is covered by large and dense tree plantations that create a continuous fuel bed. The tree planted are two alien species: Pinus radiata and Eucalyptus sp., from California and Australia, respectively. Most burned area (+60%) were plantations, and if we standardize the area burned in relation to the area with each landuse in the region (plantations, native forest, grasslands, agriculture) we see that the plantations were more affected by fire than expected by their area in each region; and this contrast with the other landuses (Figure 1, [1]). That is, tree plantations were an important driver for the large area burned (highly flammable).

Interesting is that the two species planted not only are highly flammable, they also have very good (although very different) postfire regeneration mechanisms, because both are originally from fire-prone ecosystems and have adapted to coupe with crown fires. Pinus radiata have serotinous cones (closed cones that open with fire) and showed an extraordinary “natural” seedling regeneration postfire (Figure 2 top), while those eucalytps planted show epicormic (stem) resprouting that allows a quick canopy recovery (even young trees, Figure 2 bottom). All suggest that these plantations were born to burn!

Figure 1: Analysis of the areas affected by fires according to types of use (forest plantations, native forest, Scrubland + pastures, and agricultural areas), in relation to what is available in each of the 4 regions that have burned the most (V, RM, VI, VII are: Valparaiso, Metropolitana, O’Higgins, and Maule). Positive data means that fire has positively selected this type of use (it has burned more than expected by the area it occupies); the negative data indicate that fire tends to avoid such landuse. There is a strong tendency for plantations to burn more than expected according to their abundance in the landscape (positive values), while native forests, scrub, or agricultural areas are burned similar or less than expected according to their abundance (negative values). The region VII (Maule) is the most extreme in positive selection of plantations and negative of other uses. Elaborated on the basis of official SIDCO-CONAF data (Chile) [1].

 


Figure. 2. Postfire regeneration of tree plantations. Top: Extraordinary postfire seedlings regeneration of Pinus radiata (adult trees are dead). Bottom: epicormic resprouting of eucalypts (mixed with dead pines). Photos from early September (ca. 7 months after fire), in the Nilahue Barahona fire (O’Higgins region, Chile).

References

[1] Incendios en Chile 2017, jgpausas.blogs.uv.es/2017/02/10

More information on:  Chile and fires | Serotiny | Epicormic resprouting

UPDATE (Jan 2019): this post and this other have inspired the following article:

Leverkus AB, Murillo PG, Doña VJ, Pausas JG. 2019. Wildfires: opportunity for restoration? Science 363 (6423): 134-135. [doi | science | pdf]

 

Resprouting at the global scale

November 2nd, 2015 No comments

Plant resprouting (i.e., the ability to form new shoots after destruction of living tissues from disturbance) is often considered a simple qualitative trait and used in many ecological studies. However, resprouting is a trait that increases fitness under many different disturbance types, occurs in a wide range of environments, is widespread in many lineages, and is morphologically very diverse. In a recent paper we review some of the complexities and misunderstandings of resprouting and highlight that cautions is needed when using resprouting ability to predict vegetation responses across disturbance types and biomes [1]. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the mediterranean biome, there are differences in functional strategies to cope with water deficit between reprouters (dehydration avoiders) and non-resprouters (dehydration tolerators) [1,2]; however, there is little research to unambiguously extrapolate these results to other biomes, and some of the extrapolations seems to be incorrect. In addition, resprouting in the mediterranean biome tends to be binary, that is, species are either resprouters or non-resprouters [3], and intermediate cases are evolutionary unstable [4]; however this is not necessary true in other biomes (e.g., in the tropics). Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration of not only resprouting but also other relevant traits (e.g., seeding, bark thickness) and the different correlations among traits observed in different biomes [5]; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome, like crown-fire mediterranean ecosystems, can guide research in other ecosystems but should not be extrapolated at the global scale.

 

Cistus-Quercus

Fig: Fire allows the coexistence of species with very different strategies: Cistus albidus seedling (left) and Quercus coccifera resprout (right) 10 months after a high intensity fire in eastern Spain (Cortes de Pallás fire, 2012, Valencia). Cistus albidus  is a drought semi-deciduous nonresprouter (obligate postfire seeder ) with a physiological drought-tolerant behavior; Quercus coccifera  is an sclerophyllous (evergreen) obligate resprouter with drought-avoiding traits [2].

References
[1] Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., Paula, S., Kaneakua-Pia, I.N. & Davis, S.D. 2016. Towards understanding resprouting at the global scale. New Phytologist 209:945-954. [doi | pdf] — New paper!

[2] Vilagrosa A., Hernández E.I., Luis V.C., Cochard H., Pausas, J.G. 2014. Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytologist 201: 1277-1288. [doi | pdf ]

[3] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdf | esa | doi]

[4] Pausas J.G. & Keeley J.E., 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65. [doi | wiley | pdf]

[5] Pausas, J.G. 2015. Bark thickness and fire regime. Functional Ecology 29:317-327. [doi | pdf | suppl.]

 

Odena fire: 55 days postfire

October 17th, 2015 No comments

The 27th of July a wildfire in Òdena (Anoia, central Catalonia, NE Spain) burned ca. 1200 ha, mainly of Pinus halepensis forest [1]. Here some details 55 days after the fire:

Top: limit of the fire, with the Montserrat mountains in the background. Middle: resprouting of understory plants; Arbutus unedo in the right. Bottom left: concentration of pine nuts around an ant nest. Bottom right: Genista scorpius resprouting. Photos by J. Garcia-Pausas (top, bottom right), A. Mazcuñan (bottom left), JG Pausas (middle).

[1] Odena fire: first visitors, jgpausas.blogs.uv.es 10-08-2015

Evolutionary ecology of resprouting and seeding

July 15th, 2014 No comments

There are two broad mechanisms by which plant populations persist under recurrent fires: resprouting from surviving tissues, and seedling recruitment [1]. Species that live in fire-prone ecosystems can have one of these mechanisms or both [1]. In a recent review paper [2], we propose a model suggesting that changes in evolutionary pressures that modify adult (P) and juvenile (C) survival in postfire conditions (Fig. 1 below) determine the long-term success of each of the two regeneration mechanisms, and thus the postfire regeneration strategy: obligate resprouters, facultative species and obligate seeders (Fig. 2). Specifically we propose the following three hypotheses: 1) resprouting appeared early in plant evolution as a response to disturbance, and fire was an important driver in many lineages; 2) postfire seeding evolved under conditions where fires were predictable within the life span of the dominant plants and created conditions unfavorable for resprouting; and 3) the intensification of conditions favoring juvenile survival (C) and adult mortality (P) drove the loss of resprouting ability with the consequence of obligate-seeding species becoming entirely dependent on fire to complete their life cycle, with one generation per fire interval (monopyric life cyle). This approach provides a framework for understanding temporal and spatial variation in resprouting and seeding under crown-fire regimes. It accounts for patterns of coexistence and environmental changes that contribute to the evolution of seeding from resprouting ancestors. In this review, we also provide definitions and details of the main concepts used in evolutionary fire ecology: postfire regeneration traits, postfire strategies, life cycle in relation to fire, fire regimes (Box 1), costs of resprouting (Box 2), postfire seeding mechanisms (Box 3), and the possible evolutionary transitions (Box 4).

 

Fig2_sm
Fig. 1 : Main factors affecting adult and offspring seedling survival (P and C, respectively), and thus the P/C ratio, in fire-prone ecosystems (from Pausas & Keeley 2014 [2]).

 

Fig3_sm

Fig. 2: The changes in the probability of resprouting along an adult-to-offspring survival (P/C) gradient are not linear but show two turning points related to the acquisition of key innovations: the capacity to store a fire-resistant seed bank (postfire seeding), and the loss of resprouting capacity. Changes in P/C ratio may be produced by different drivers (Fig. 1) which drove the rise of innovations during evolution, e.g., during the increasing aridity from the Tertiary to the Quaternary (from Pausas & Keeley 2014 [2]).

 

Refecences

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [doi | pdf | esa | jstor]

[2] Pausas J.G. & Keeley J.E. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytologist 204: 55-65 [doi | wiley | pdf]

 

Postfire blooming of Asphodelous

April 5th, 2014 No comments

The 4th of February, 2014, a forest fire burnt ca. 200 ha in Segorbe, near Valencia, eastern Spain. Two months later (1st April 2014), few plants had started to resprout, others had started to germinate, but there were three species that had resprouted very quickly and were already flowering: Asphodelous cerasiferus (= A. ramosus; Spanish: gamón), Iris lutescens, and Asparagus horridus; the first showed an spectacular blooming (pictures below).

Asphodelus-bloom
Spectacular postfire bloom of Asphodelous cerasiferus in Segorbe, near Valencia, Spain (photos by MC Castellanos & JG Pausas, two months after fire).

Proyecto VIRRA

February 28th, 2014 No comments

El proyecto “El papel del fuego en la Variabilidad Intraespecífica (fenotípica y genética) de plantas del matoRRAl mediterráneo (VIRRA)” finalizó hace unos meses. Aquí se puede ver un resumen y los principales productos de este proyecto: enlace.

Ulex parviforus_juli_sm

La aliaga (Ulex parviflorus) es una de las principales especies estudiadas en VIRRA [1, 2].

[1] Ulex born to burn, jgpausas.blogs.uv.es, 9/Nov/2011

[2] Ulex born to burn (II): genetic basis of plant flammability,  jgpausas.blogs.uv.es, 25/Jan/2014

Serotiny

November 16th, 2013 No comments

Serotiny is the delayed seed release for more than a year by retaining the seeds in a woody structure [1]. This implies an accumulation of a canopy seed bank. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat opens the cones and seeds are dispersed in the post-fire bed which is rich in resource and the competition and predation are low. It is typical of many Proteaceae and some conifers, like some pine species [1, 2; figure below].

Two recent papers analyse the serotiny of two mediterranean pines Pinus halepensis and Pinus pinaster [3, 4]. P. halepensis show higher proportion of serotinous cones than P. pinaster, but the latter retain the cones for longer [3]. The two species show high variability of serotiny within and between populations, but they show a clear pattern of higher serotiny in populations subject to high frequency of crown-fires than those living in areas where crown-fires are rare or absent. This is true either considering serotiny as the proportion of serotinous cones or as the age of the cones stored. Compared with other pines worldwide, the strength of the fire-serotiny relationship in P. pinaster is intermediate, and in P. halepensis is among the highest known [3]. For P. halepensis (the species with higher % serotiny), populations in high fire recurrence regimes have higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. This phenotypic spatial structure generated by fire could be a consequence of the spatial genetic structure of the population. The second study used genomic tools to search for a genetic association for serotiny [4]. The analysis of 384 SNPs of 199 individuals of P. pinaster (in 3 populations included in the previous study [3])  shows that 17 loci were associated with serotiny and explain all together ca. 29% of the serotiny variation found in the field. All these results adds further evidence to the emerging view that fire shapes intraspecific variability of traits and generates phenotypic divergence between populations [5, 6, 7].

Figure: Serotinous cones of Pinus pinaster (Foto: K.B. Budde)

References:

[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press.  [The book]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194: 751-759. [doi | wiley | pdf (suppl.)]

[3] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. American Journal of Botany 100: 2349-2356 [doi | amjbot | pdf | supp.]

[4] Budde, K. B., Heuertz, M., Hernández-Serrano, A., Pausas, J.G., Vendramin, G.G., Verdú, M. & González-Martínez, S.C. 2014. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster Aiton). New Phytologist  201: 230-241 [doi | pdf]

[5] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi] [trends] [pdf]

[6] Pausas, J. G., Schwilk, D. W. 2012. Fire and plant evolution. New Phytologist, 193:301-303. [doi | wiley | pdf]

[7] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorusNew Phytologist 193: 18-23. [doi | wiley | pdf]

 

Smoke-stimulated recruitment

September 16th, 2013 No comments

In many plant species from mediterranean ecosystems, germination is promoted by fire [1]; this effect may be driven by the heat [e.g., 2-4] or by the chemicals produced by the fire (e.g., smoke, 4,5]). Most information regarding to smoke-stimulated germination in the Mediterranean Basin comes from a few experiments performed in laboratory conditions. This approach does not consider factors that occur in the field, such as species interactions, density-dependent processes or the fact that seeds spent time in the soil. A recent field experiment performed in eastern Spain show that smoke increase overall seedling recruitment, specially seedlings of annual plant species [6]. However, despite most species had higher seedling establishment in the smoke than in the control subplots, there were very few species in which the effect of smoke was statistically significant, suggesting that the community response to smoke cannot be inferred from individual species; it is the sum of small differences in each species towards the same direction that produces a significant pattern at community scale. This emerging property of the community is often neglected by only considering germination experiments in the laboratory. The results also suggest that the effect of smoke in annual species of the Mediterranean Basin might be more relevant than previously thought.

References
[1] Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G. & Rundel P.W. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press. [The book]

[2] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [pdf | doi]

[3] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7: e51523. [doi | plos | pdfblog]

[4] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [pdf | doi | post]

[5] Smoke-stimulated germination, jgpausas.blogs.uv.es, 2/Dec/2011.

[6] Tormo, J., B. Moreira, and J. G. Pausas. 2014. Field evidence of smoke-stimulated seedling emergence and establishment in Mediterranean Basin flora. Journal of Vegetation Science 25: 771-777 [doi | wiley | pdf]

Seed dormancy as a fire adaptation in Mediterranean ecosystems

December 6th, 2012 1 comment

Plant species with physical seed dormancy are common in mediterranean fire-prone ecosystems. Because fire breaks seed dormancy and enhances the recruitment of many species, this trait might be considered adaptive in fire-prone environments [1]. However, to what extent the temperature thresholds that break physical seed dormancy have been shaped by fire (i.e., for post-fire recruitment) or by summer temperatures in the bare soil (i.e., for recruitment in fire-independent gaps) remains unknown [1]. In a recent paper published in PLoS ONE [2], we tested these two alternatives in six woody species (21 populations) occurring in fire-prone areas across the Mediterranean Basin (Spain and Turkey). Seeds from different populations of each species were subject to heat treatments simulating fire (i.e., a single high temperature peak of 100ºC, 120ºC or 150ºC for 5 minutes) and heat treatments simulating summer (i.e., temperature fluctuations; 30 daily cycles of 3 hours at 31ºC, 4 hours at 43ºC, 3 hours at 33ºC and 14 hours at 18ºC).

The results showed that fire treatments broke dormancy and stimulated germination in all populations of all species. In contrast, summer treatments had no effect over the seed dormancy for most species and only enhanced the germination in Ulex parviflorus, although less than the fire treatments. That is, the results suggest that in Mediterranean species with physical dormancy, the temperature thresholds necessary to trigger seed germination are better explained as a response to fire than as a response to summer temperatures (see Figure below). The high level of dormancy release by the heat produced by fire might enforce most recruitment to be capitalized into a single post-fire pulse when the most favorable conditions occur. This supports the important role of fire in shaping seed traits [3]. Given that seed dormancy is heritable, demonstrating that it provides higher chances of recruitment (i.e., higher potential fitness benefits) in response to fire than in response to summer temperatures suggests the temperature threshold for breaking dormancy might be an adaptation to fire [1, 4].

Figure: Germination (%) in fire conditions (y axis) versus germination (%) in summer conditions (x axis) for 6 species (21 populations across the Mediterranean basin). Intraspecific variability (i.e., among populations) is indicated by small symbols (mean population value) emerging from the large symbol (mean species value). The 1:1 line is also shown (dotted line). Species considered are: Cistus albidus, Cistus creticus, Cistus parviflorus, Cistus salviifolius, Fumana thymifolia, and Ulex parviflorus.

References:
[1] Keeley, J. E., J. G. Pausas, P. W. Rundel, W. J. Bond, and R. A. Bradstock. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Sci. 16:406-411. [doi | pdf]

[2] Moreira, B. and J. G. Pausas. in press. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(6): e39810. [doi | pdf]

[3] Moreira B., Tavsanoglu Ç., Pausas J.G. 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia 168: 671-677. [doi | pdf]

[4] Pausas J.G. & Schwilk D.W. 2012. Fire and plant evolution. New Phytol., 193, 301-303. [doi | wiley | pdf]

Life 15 days after the large fires in Valencia

July 22nd, 2012 4 comments

Few days ago two simultaneously large fires occurred very near to Valencia city [1]: The first affecting Dos Aguas and surroundings (ca. 29000 ha burned), and the second in Andilla and surroundings (ca. 19000 ha burned). The fires burned under extreme fire whether conditions (strong drought, high temperature and strong dry wind [Foehn type wind]). 15 days after the fire, I visited area burned around Dos Aguas and took these pictures showing the postfire life activity; several species already started to resprout and pines were dispersing their seeds. In addition I saw several lizards, different birds and a fox, all in the middle of the recently burned area, quite far from the edge of the fire.

A. Chamaerops humilis (en: Mediterranean dwarf Palm, es: palmito, cat: margalló)

B. Resprout of Quercus coccifera (en: Kermes oak, es: coscoja, cat: garric, coscoll)

C. Resprout of Daphe gnidium (en: flax-leaved daphne, es: torvisco, cat: matapoll). The high intensity of the fire is clear from the thick remaining branch.

D. Post-fire seed dispersal of the serotinous cones of Pinus halepensis (en: Aleppo Pine , es: pino carrsco; cat: pi blanc).

 

[1] Incendios forestales en Valencia, Junio 2012, jgpausas.blogs.uv.es, 4/Julio/2012.

 

Bark harvesting and Cork oak vulnerability to fire

July 11th, 2012 No comments

Cork oak (Quercus suber) is a strong fire-resistant tree species thank to is very thick and insulating corky bark [1-4]. In fact it is the only European tree with the capacity to resprout from epicormic buds in the canopy after an intense crown-fire [1]. However, the bark of the cork oak is periodically harvested for cork production (mainly for bottle tops but also for other uses, [2]) and thus bark harvesting increases the vulnerability of the tree to fire. In a recent paper we quantified the response of cork oak (tree mortality, stem mortality, and crown recovery) after fire [5]. The results showed that fire vulnerability was higher for trees with thin bark (young or recently debarked individuals) and decreased with increasing bark thickness until cork was 3–4 cm thick. This bark thickness corresponds to the moment when exploited trees are debarked again, meaning that exploited trees are vulnerable to fire during a long period. Exploited trees were also more likely to be top-killed than never-debarked trees, even for the same bark thickness. Additionally, vulnerability to fire increased with burn severity and with tree diameter, and was higher in trees burned in early summer or located in drier south-facing aspects. All these aspects need to be considered when managing cork oak woodlands specially nowadays that fire activity is increased [6]. Increasing the length of the cork harvesting cycle would increase the time during which the trees have a thicker bark and are better protected against fire injury. Since cork is the main economical income from these forests, stopping bark exploitation might be unrealistic in most cases. However, in fire-prone areas where conservation and tourism are the main objectives, stopping bark explotation would likely be the most effective option to increase ecosystem resilience to fire. The valorisation of many other services provided by cork oak forests [7] could create economic incentives to decrease the bark-exploitation dependency of these systems in the future.


Foto: Cork oak  resprouting from epicormic buds (By F. Catry)

References

[1] Pausas, J.G. 1997. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 8: 703-706. [doi | pdf]

[2] Aronson, J., J. S. Pereira, and J. G. Pausas (eds). 2009. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration. Island Press, Washington, DC. [web of the book]

[3] Pausas J.G. 2009. Convergent evolution. jgpausas.blogs.uv.es, 8/Nov/2009. [link]

[4] Pausas J.G. 2011. Bark thickness: a world record? jgpausas.blogs.uv.es, 3/Jan/201. [link]

[5] Catry F., Moreira F., Pausas J.G., Fernandes P.M., Rego F., Cardillo E. & Curt T. 2012. Cork Oak vulnerability to fire: the role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 7: e39810. [doi | pdf ]

[6] Pausas J.G. & Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215-226. [doi | springer | pdf]

[7] Bugalho M.N., Caldeira M.C., Pereira J.S., Aronson J., & Pausas J.G. 2011. Mediterranean Cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9: 278-286. [doi | pdf | blog]

 

New Book: Fire in Mediterranean Ecosystems

March 13th, 2012 No comments

Finally the new fire ecology book by Keeley et al. (2012) has been published:



For more information, table of contents, etc, see here.

Cambridge UP (ukusaau), Amazon (ukusajp), eBooks

To resprout or not to resprout

January 25th, 2012 No comments

Resprouting is a mechanism that allows individual plants to persist in disturbance-prone ecosystems. It is often considered a binary trait, defining species as resprouters or non-resprouters [1]. Although this dichotomous classification accounts for a high proportion of the interspecific variability in resprouting, it does not account for the intraspecific variability, as not all individuals of resprouting species successfully resprout [2], even if they are subject to a similar disturbance. In a recent paper, we proposed a conceptual model that disaggregates the process of resprouting into three sequential steps: initial ability to resprout, resprouting vigour and post-resprouting survival [3]. Intraspecific variability in resprouting supported the importance of: a) the pre-disturbance state of the plant (i.e. plant size and stored resources) on the initial ability to resprout and on the resprouting vigour, and b) the initial post-disturbance capacity to acquire resources (i.e., resprouting vigour) on the post-resprouting survival. The proposed three-step model of resprouting provides a mechanistic description of the factors driving intraspecific variability in resprouting.

Figure: Probability of initiating resprouting (as a function of starch concentration in roots), resprouting vigor (as a function of pre-disturbance plant size), and survival (as a function of the resprouting vigor), for Linum suffruticosum [see pictures] in the Valencia (eastern Spain). From Moreira et al. (2012) [2]

References

[1] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [jstor | pdf]

[2] Catry F.X., Rego F., Moreira F., Fernandes F.M., Pausas J.G. 2010. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manage. 206: 1184-1192. [doi | pdf | post]

[3] Moreira B., Tormo J, Pausas J.G. 2012. To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos [doipdf]

Cork oak acorn production

January 20th, 2012 No comments

Cork oak (Quercus suber, from the western Mediterranean Basin[1]) is a weird oak. In most oak species, acorn maturation pattern is clear and fixed. In some species acorns mature in one year, in others acorn require two years for maturation. This trait is not fixed in Cork oak, some trees have annual acorns, some others have mainly biennial acorns, and some trees have both. This is why when we relate Cork acorn production with climatic variables the relation is very weak (explained variance < 8%), much weaker than for other oaks. However, after the trees being grouped according to their dominant acorn maturation pattern (annual or biennial), weather parameters account for 44% of the variability in acorn crops, with trees with annual acorns exhibiting mast fruiting in years with reduced spring frost and shorter summer droughts and trees with biennial acorns showing the opposite pattern [2]. Thus, conditions that negatively affect annual production could be beneficial for biennial production (and vice versa). The ability to modulate the acorn production pattern of a given year according to the environmental conditions could be regarded as an example of phenotypic plasticity for facing variable and uncertain climatic conditions, such as those in Mediterranean ecosystems. To what extent other oaks living under variable and stressful conditions behave similarly remains to be explored.

Figure: Recently debarked Cork oak and cork oak landscape in eastern Spain (foto: J. Cortina)

[1] Aronson, J., J. S. Pereira, and J. G. Pausas (eds). 2009. Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration. Island Press, Washington, DC. [web]

[2] Pons, J. and J. G. Pausas. 2012. The coexistence of acorns with different maturation patterns explains acorn production variability in Cork oak. Oecologia [doipdf]

Other post on Cork oak:

  • Conservation of cork oak ecosystems, Mar 14th, 2011 [link]
  • Bark thickness: a world record?, Jan 3rd, 2011 [link]
  • Wine supporting biodiversity, Jan 5th, 2010 [link]
  • Cork Oak Woodlands on the Edge, Oct 14th, 2009 [link]

Differences between resprouters and non-resprouters

October 1st, 2011 No comments

Resprouting is a very important process in plants living in disturbance-prone ecosystems, and the December issue of the journal Plant Ecology is going to be dedicated to this topic (Ecology of plant resprouting in fire-prone ecosystems). During the recent years, and starting from the PERSIST project, we have been comparing functional traits between resprouters and non-resprouters in Mediterranean fire-prone ecosystems, and the last comparison (physiological traits [5]), is included in this special issue. Resprouters and non-resprouters are two plant syndromes in Mediterranean ecosystems that also differ in their evolutionary history [1]. Resprouters tend to exhibit a deeper root-system than non-resprouters that inverse less resources on roots. So one could think that resprouters are better adapted to drought. However, both resprouters and non resprouters coexist, and non-resprouters counteract their lower root allocation by different traits that confer higher drought resistance [2]. Non-resprouters have higher drought resistance at leave level because they have higher water use efficiency (WUE) and higher leaf mass per area (LMA; i.e., higher sclerophylly, lower SLA) [3]. The seedling root structure of non-resprouters also allows them to more efficiently explore the upper soil layer [4]. A recent paper also shows that, when water is non-limiting, non-resprouters showed a better performance of leaf gas exchange traits (higher assimilation, stomatal conductance and transpiration) than resprouters [5]; that is non-resprouters have higher efficiency in resource capture, and thus a better capacity to take advantage of water when it is freely available. In addition, resprouters and non-resprouters also differ in their post-fire germination, as non-resprouters tend to have a greater capacity to both (i) persist after fire by means of recruiting (greater heat-tolerance) and (ii) increase their population after fire (greater heat-stimulated germination), than resprouters [4]. All these results suggest that resprouters and non-resprouters are two contrasted syndromes or functional types in the Mediterranean Basin [6].

Figure: Arbutus unedo resprouting after a fire.

References:

[1] Pausas J.G. & Verdú M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: A phylogenetic approach. Oikos 109: 196-202. [pdf |doi]

[2] Pausas J.G. 2010. Fire, drought, resprouting: leaf and root traits. URL: jgpausas.blogs.uv.es, 22/Oct/2010.

[3] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [pdf | [doi]

[4] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331. [doipdfblog]

[5] Hernández E.I., Pausas J.G. & Vilagrosa A. 2011. Leaf physiological traits in relation to resprouter ability in the Mediterranean Basin. Plant Ecology 212:1959-1966 [doi| pdf]

[4] Paula S. & Pausas J.G. 2008. Burning seeds: Germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96 (3): 543 – 552. [pdf | doi]

[6] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdfjstor] [Ecological Archives E085-029]

Intraspecific plant variability and the spatial scale

September 24th, 2011 No comments

Variability is a fundamental characteristic of life and the raw material for natural selection, driving speciation and diversification processes. Traditional biogeographical theory would predict that plants in populations that are close each other (e.g., few km) should be more similar among them, than plants in distant populations (e.g., 100s or 1000s km). This is because biogeographical processes such as migration, glacial/interglacial climatic fluctuations and isolation should cause distant plant populations to diverge, and thus enhance intraspecific variability at large scales, while gene flow through close populations should reduce divergences. In contrast, in a recent paper we suggest that in fire prone-ecosystems, where fire may generate local heterogeneity, local variability in traits related to regeneration are quite large, overriding the variability at the larger scale [1]. Studying post-fire regeneration traits in Cistus salviifolius and Lavandula stoechas, in eastern Iberia (IB, Spain) and in south-western Anatolia (AN, Turkey), we found that the trait variability within each region is larger than between regions (separated by about 2600 km, with the sea in the middle). The traits studied were seed size, seed dormancy and germination stimulation by head and by smoke. The two studied species exhibited germination stimulated by the fire-related cues; and independently of the region, the different populations of each species had a similar pattern of response. That is, Cistus salviifolius was stimulated by heat and Lavandula stoechas was mainly stimulated by smoke, although heat also exhibited a positive effect on the latter species (see also [2] for more details on heat- and smoke- stimulated germination). All these results supports the prominent role of fire as an ecological and evolutionary process across the Mediterranean Basin, producing trait variability and shaping biodiversity [3, 4].

References

[1] Moreira B., Tavsanoglu Ç., Pausas J.G. 2012. Local vs regional intraspecific variability in regeneration traits. Oecologia 168: 671-677 [doi | pdf]

[2] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635.[pdf| doiblog]

[3] Pausas J.G. & Keeley J.E. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593-601 [doi | pdfpost]

[4] Keeley J.E., Pausas J.G., Rundel P.W., Bond W.J., Bradstock R.A. 2011. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16(8): 406-411. [doi | pdf | For managers]

Fire and alien plants

November 25th, 2010 No comments

In Mediterranean Basin ecosystems, fires are frequent, and post-fire regeneration is tipically based on native species, that is, there is no invasion of alien species after fire. However, this is not the case in the other Mediterranean climatic regions, where fire frequencies higher than their natural (historic) fire regime favors the invasion of alien plants. This is specially the case in the Mediterranean ecosystems of Chile, where recurrent fires play a little role on the evolutionary history. In Chile, fires appeared with the indigenous settlements, and increased exponentially since the time of the Spanish invasion (1536). This increase in fires, together with heavy grazing, has reduced the native matorral and increased the invasive species. In a recent paper, Gómez-Gonzalez et al. [1] show that fire open the window for the establishment of annual plants, and most of them are alien (from the Mediterranean Basin). The successful establishment of alien annuals was due to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species (annuals or perennials). Thus the results demonstrate that fire is a relevant factor for the maintenance of alien-dominated grasslands in the Chilean matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasions patterns in fire-prone ecosystems.

[1] Gómez-González S, Torres-Díaz C., Valencia G, Torres-Morales P, Cavieres L.A., and Pausas J.G (in press). Anthropogenic fires increase alien and native annual species in the Chilean coastal matorral. Diversity and Distributions 17: 58-67 [doi | pdf]

invasion-fumaria_sm
Figure: Chilean matorral recently burnt showing the invasion of Fumaria capreolata (flowering), and annual alien species original from Europe (Foto by S. Gómez-González).

Fire, drought, resprouting: leaf and root traits

October 22nd, 2010 No comments

Drought and fire are prevalent disturbances in Mediterranean ecosystems. Plant species able to regrow after severe disturbances (i.e. resprouter life history) have higher allocation to roots and higher water potential during the dry season than coexisting non-resprouting species. However, non-resprouters have higher survival rate after summer drought. We expect that, to counteract their shallow-rooting systems and to maximize seedling survival, non-resprouters have traits that confer higher water-use efficiency and higher efficiency in soil resource acquisition than resprouters.

Some time ago we tested this prediction in relation to leaf traits [1] and found that non-resprouters have higher leaf mass per area (LMA; i.e. lower specific leaf area, SLA), leaf dry matter content (LDMC), area-based leaf nitrogen content (LNCa) and integrated water-use efficiency (δ13C) than resprouters, suggesting that they have higher potential for structural resistance to drought and higher water-use efficiency than resprouters.

In a recent paper we have now tested the prediction for root traits in seedlings [2]. We found that non-resprouters have higher specific root length (SRL) and longer, thinner and more branched lateral roots, especially in the upper soil layers. The external links (i.e. the most absorptive root region) are also more abundant, longer, thinner and with higher SVR for non-resprouters. Thus seedling root structure of non-resprouters species allows them to explore more efficiently the upper soil layer, whereas seedling roots of resprouters will permit both carbon storage and deep soil penetration.

Whereas resprouters tend to maximize the surface and the efficiency of the organs for carbon uptake to ensure carbohydrate storage for resprouting (eg, higher SLA), non-resprouters maximize the root surface (eg, higher SRL), since their survival and growth may be limited by soil resources.

[1] Paula S. & Pausas J.G. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941-947. [doi | pdf]

[2] Paula S. & Pausas J.G. 2011. Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321-331 [doi | pdf]

Specific Root Length

Relationship between average root diameter and specific root length (SRL; log-scale) for resprouting (R+, closed symbols) and non-resprouting (R-, open symbols) species. Intraspecific variability is indicated by segments emerging from each symbol. From Paula & Pausas (Oecologia [2]).

Post-fire tree mortality, central Portugal

August 26th, 2010 No comments

In September 2003, a mixed forest of central Portugal (Tapada Nacional de Mafra) burned in a large crown fire. We surveyed the survival of more than 700 trees during 4 years postfire. The results are detailed in a recent paper by Catry et al. (2010, [1]) ; the table below provides a summary on the proportion of the trees that  (a) died, (b) survived but were top-killed (stem and crown mortality) and resprouted from the base, and (c) the stem survived, after 4 years postfire (for tree mortality, the value observed after the first year is given in brackets).

a) Tree mortality b) Stem mortality (basal resprouting) c) Stem survival
Castanea sativa (20) 83 0 17
Crataegus monogyna (0) 7 86 7
Fraxinus angustifolia (0) 0 15 85
Olea europaea sylvestris (0) 0 97 3
Pistacia lentiscus (0) 0 100 0
Quercus coccifera (0) 10 89 1
Quercus faginea (2) 14 75 11
Quercus suber (1) 1 0 99
Pinus pinaster (84) 95 0 5
Pinus pinea (77) 85 0 15

Most pines (P. pinaster and P. pinea) died and few, specially of P. pinea, were little affected by fire; there were a significant positive relationship between crown damage and tree mortality.
Most broadleaved trees survived the fire, and whether the stem survived or died (and resprouted from the base) were related to bark thickness and char height (i.e. fire severity). Castanea sativa showed the highest tree mortality, mostly due to post-resprouting mortality after the first year. Fraxinus angustifolia, Olea europaea and Pistacea lentiscus showed no mortality at all; most Olea and Pistacea individuals resprout from the base, while for Fraxinus the crown of most trees were unaffected. The low effect of fire in Fraxinus angustifolia is probably due to the topographic positions where this species occurs; in addition theses trees are quite tall and with relatively thick bark. Quercus coccifera and Q. faginea showed low mortality and most trees resprouted from the base. Quercus suber showed almost no mortality and almost all trees showed epicormic resprouting, due to their extremely thick and insulating bark [2, 3].

References

[1] Catry F.X., Rego F., Moreira F., Fernandes F.M., Pausas J.G. 2010. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manage. 206: 1184-1192. [doi] [pdf]

[2] Pausas, J.G. 1997. Resprouting of Quercus suber in NE Spain after fire. J. Veg. Sci. 8: 703-706. [pdf]

[3] Aronson J., Pereira J.S., Pausas J.G. (eds). 2009. Cork Oak Woodlands on the Edge: conservation, adaptive management, and restoration. Island Press, Washington DC. 315 pp. [The book] [Ch 1, the tree]

[Update] see: “To resprout ot not to resprout”, Jan 25th, 2012.