Wildfires and global change: the threshold approach
To generate wildfires we need some specific components (ignitions, fuel, and right conditions). Traditionally, this has been explained using the triangle approach [1] or the 4-switches approach [2]. We propose a more mechanistic model to explain wildfires, the threshold approach [3]. Under this view, wildfires occur when three thresholds are crossed (ignition, continuous fuel, and drought); and fire weather moves these thresholds to lower values and so it triggers the occurrence and spread of wildfires (Fig. 1). The size and duration of the fire largely depend on how long the fire weather lasts and the extent of the area containing suitable fuel.
Climate change increases the conditions conductive to fire, and thus it also increases the frequency in which some of these thresholds are crossed, extending the fire season and increasing the frequency of dry years. However, climate-related factors do not explain all the complexity of global fire regime changes as human factors are extremely important: humans shifts ignition patterns and modify fuel structure. Humans cause ignitions directly by accident or arson, but also indirectly by altering fuels that can make them more susceptible to ignitions (vegetation openings). Humans also modify fuel continuity, either reducing it (eg fragmentation) or increasing it (eg fire suppression). For instance, in many Mediterranean ecosystems, the drought threshold is crossed annually, and vegetation cover (fuel) is usually high enough for fire spread; thus, ignitions are a key factor. Larger populations of humans in the wildland-urban-interface will likely lead to increased ignition rates, and consequently higher probability of ignitions coinciding with extreme weather events to generate wildfires.
References
[1] Moritz et al. 2005. Wildfires, complexity, and highly optimized tolerance. P Natl Acad Sci USA 102: 17912–17.
[2] Bradstock RA. 2010. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecol Biogeogr 19: 145–58.
[3] Pausas JG & Keeley JE 2021. Wildfires and global change. Front Ecol Environ. [doi | web | pdf]