Archive

Archive for June, 2021

Wildfires and global change: the threshold approach

June 3rd, 2021 No comments

To generate wildfires we need some specific components (ignitions, fuel, and right conditions). Traditionally, this has been explained using the triangle approach [1] or the 4-switches approach [2]. We propose a more mechanistic model to explain wildfires, the threshold approach [3]. Under this view, wildfires occur when three thresholds are crossed (ignition, continuous fuel, and drought); and fire weather moves these thresholds to lower values and so it triggers the occurrence and spread of wildfires (Fig. 1). The size and duration of the fire largely depend on how long the fire weather lasts and the extent of the area containing suitable fuel.

Climate change increases the conditions conductive to fire, and thus it also increases the frequency in which some of these thresholds are crossed, extending the fire season and increasing the frequency of dry years. However, climate-related factors do not explain all the complexity of global fire regime changes as human factors are extremely important: humans shifts ignition patterns and modify fuel structure. Humans cause ignitions directly by accident or arson, but also indirectly by altering fuels that can make them more susceptible to ignitions (vegetation openings). Humans also modify fuel continuity, either reducing it (eg fragmentation) or increasing it (eg fire suppression). For instance, in many Mediterranean ecosystems, the drought threshold is crossed annually, and vegetation cover (fuel) is usually high enough for fire spread; thus, ignitions are a key factor. Larger populations of humans in the wildland-urban-interface will likely lead to increased ignition rates, and consequently higher probability of ignitions coinciding with extreme weather events to generate wildfires.

Fig. 1. Probability of fire occurrence vs ignitions; fire spread vs landscape fuel continuity; and, fuel flammability vs drought. In each of the three graphs, vertical lines indicate the thresholds. In all cases, fire weather (strong wind, high temperature, or low humidity) moves the curve (and the threshold) towards lower values (thick red arrow; i.e. , saturation is reached at lower values of the x axis), with the consequence of increasing the probability of an ignition resulting in a fire, the fire spread (for a given landscape configuration), and the flammability of the vegetation (fuel dries out quicker). The flow chart indicates the main factors affecting the fire drivers: growing population (in or near wildlands); fuel changes in the landscape (fragmentation, oldfields, fire exclusion, etc.); and climate change (driven by the increase in greenhouse gases). From [3].

 

References

[1] Moritz et al. 2005. Wildfires, complexity, and highly optimized tolerance. P Natl Acad Sci USA 102: 17912–17.

[2] Bradstock RA. 2010. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecol Biogeogr 19: 145–58.

[3] Pausas JG & Keeley JE 2021. Wildfires and global change. Front Ecol Environ. [doi | web | pdf]