Mediterranean diversification and plant syndromes
Woody plants of the Mediterranean Basin can be classified in two contrasted morpho-functional syndromes [1]: a) plants with sclerophyllous, evergreen leaves and small, unisexual greenish or brownish flowers with a reduced perianth, and large seeds dispersed by vertebrates; and b) plants with alternative character states (non-sclerophyllous deciduous, semi-deciduous or summer deciduous species with large and conspicuous flowers pollinated by insects, and small seeds). The sclerophyllous syndrorme (a) occurs in clades whose characteristics pre-date the appearance of the mediterranean climate while the non-sclerophyllous syndrome (b) arose in clades that have evolved after the emergence of this distinctive climate (Tertiary – Quaternary transition).
A recent phylogenetic study [2] show that during the time with prevalent mediterranean climate, lineages with the non-sclefophyllous syndrome showed a higher speciation rate than the sclerophyllous lineages, suggesting that a syndrome-driven local diversification has occurred in shrublands under mediterranean conditions. The processes behind this result might be divers, but fire might had an important role. The rise of mediterranean climate increased fire activity [3] and traits defining these two syndromes are related to post-fire regeneration traits and to the age to maturity [4,5]. The non-sclerophyllous syndrome is associated with species considered post-fire seeders (i.e., killed by fire in which populations regenerate from a persistent seed bank; fire-stimulated germination [6,7]) and to species with early maturation. In fire-prone ecosystems, these characteristics reduce the generation time and the overlap between generations and thus they provide more opportunities for diversification.
Overall, the results provide an example of how the integration of the environmental filter in a dated phylogeny may recreate the local history of lineages and help to explain assembly processes in mediterranean ecosystems.
Figure: Frequency distribution of differences in local speciation rate (λ) between non-sclerophyllous (n) and sclerophyllous (s) syndromes in the Valencia woody flora for 3 different post cut temporal slices (cutoff of 10, 6, and 3.6 My) related to the increasing aridity associated with the rise of mediterranean climate. For all alternative phylogenies (i.e., accounting for the undertainity in node age), speciation rate of the non-sclerophyllous syndrome is greater than for the sclerophyllous one. See Verdú & Pausas (2013) for details [2].
References
[1] Herrera, CM. 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am. Nat. 140:421-446.
[2] Verdú M. & Pausas J.G. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. Evolution. [doi | pdf]
[3] Keeley JE., Bond WJ., Bradstock RA., Pausas JG. & Rundel PW. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press [the book]
[4] Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. [pdf | jstor]
[5] Pausas J.G. & Verdú M. 2005. Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: A phylogenetic approach. Oikos 109: 196-202. [doi| pdf]
[6] Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105: 627-635. [doi| pdf]
[7] Moreira B. & Pausas J.G. 2012. Tanned or burned: The role of fire in shaping physical seed dormancy. PLoS ONE 7(12): e51523. [doi | plos | pdf]