Home > Fire Ecology > Fire and diversity

Fire and diversity

In a recent paper [1], we studied the relationship between plant diversity (Fig. 1a) and fire activity (Fig. 1b) for the different ecoregions of the world, and found a strong positive relationship (Fig. 2), even after taking into account productivity and other major environmental variables [1]. This is the first global assessment of the importance of fire as major determinant of species diversity. There are at least two (not mutually exclusive) mechanisms by which fire may drive plant diversity at the scale and grain considered. 1) A selective process; there is both micro and macro evolutionary evidence suggesting that fire regime can drive population divergence and diversification [2-5]. And 2) Fires generate landscape mosaics and thus more habitat types and more niches likely to be filled by different species. In fact, the two processes are linked as landscape mosaics are also appropriate frameworks for population divergences and selective processes in fire-prone ecosystems [6]. That is, our results suggest that fire generates the appropriate conditions for a large variety of plants in many regions worldwide. Or, in other words, a world without fires (if possible at all) would be less diverse.

 


Fig. 1. Maps of plant diversity (logarithm of the number of species divided by the ecoregion area) and fire activity (estimated by 15 years of remote sensing data for each ecoregions, standardized from 0 to 1) for each terrestrial ecoregion of the world. From [1].


Fig. 2. Plant diversity in each terrestrial ecoregion (number of species divided by area, log scale; Fig. 1a) plotted against an indicator of fire activity (Fig. 1b); the two lines refer to fitted lines for low and high radiative power (an indicator of fire intensity). Form [1].

References

[1] Pausas J.G. & Ribeiro E. 2017. Fire and plant diversity at the global scale. Global Ecol. & Biogeogr. [doi | pdf | data & maps (figshare)]

[2] He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194: 751-759. [doi | wiley | pdf | suppl.]

[3] Pausas J.G., Alessio G., Moreira B. & Corcobado G. 2012. Fires enhance flammability in Ulex parviflorus. New Phytol. 193: 18-23. [doi | wiley | pdf]

[4] Hernández-Serrano A., Verdú M., González-Martínez S.C., Pausas J.G. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[5] Pausas, J.G. 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20: 318-324. [doi | sciencedirect | cell | pdf]

[6] Castellanos, M.C., González-Martínez, S. & Pausas, J.G. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  

 

 

  1. May 26th, 2017 at 15:26 | #1

    This looks fantastic and I’m eager to read it in greater detail (read the abs, figs, design, and stats)! I’m surprised that the fire variable(s) explains so much of the variance, but find it fascinating.


¡IMPORTANTE! Responde a la pregunta: ¿Cuál es el valor de 12 11 ?